
STANFORD MICRODEVICES

Product Description

The Stanford Microdevices' SCP-1016 polar modulator is a unique component designed to simplify the correction electronics used on high linearity power amplifiers. This high linearity device provides amplitude and phase adjustment through two independently modulated control voltages.

The SCP-1016 is fabricated using silicon germanium device technology and delivers 15dB of amplitude adjustment and greater than 360 degrees of phase adjustment. The broadband design of this component results in outstanding amplitude and phase flatness as required in many correction circuit architectures. This device also includes a fast shutdown feature that can be used to protect subsequent amplifier stages from excessive RF overdrive.

Functional Block Diagram

Advanced Data Sheet

SCP-1016 800 - 1000 MHz High Linearity Silicon Germanium **Polar Modulator**

16 pin TSSOP with Exposed Pad Package Body: 0.20 x 0.17 x 0.04 (inches) 5.1 x 4.5 x 1.1 (mm)

Product Features

- **High linearity**
- Independent phase & amplitude control
- Fast shut down feature

Applications

- High power amplifier correction circuitry
 - Feedforward architectures
 - Pre-distortion architectures

_C =5.0V, I=150mA, T=25%	Unit Min. Typ.	Max.
	MHz 800	1000
	dBm +40	
	dB -40	-20
	deg 180	
	deg -360	+360
e control	deg -0.5 0	+0.5
ntrol	dB -1.0 0	+1.0

Key Specifications

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.

522 Almanor Ave., Sunnyvale, CA 94086

Phone: (800) SMI-MMIC 1

Absolute Maximum Ratings

Parameters	Value	Unit
Supply Voltage	+9.0	V _{DC}
RF Input (ampctl, phsctl,in, out)	+10	dBm
Min Control Voltage (ampctl, phsctl, swapi, swapq, shut)	0	V _{DC}
Max Control Voltage (ampctl, phsctl, swapi, swapq, shut)	+6.0	V _{DC}
Operating Temperature	-40 to +85	°C
Storage Temperature	-40 to +150	°C

Advanced Data Sheet SCP-1016 SiGe Polar Modulator

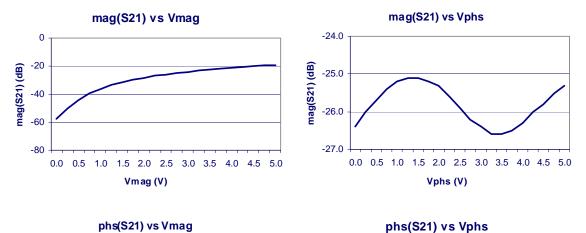
Test Conditions

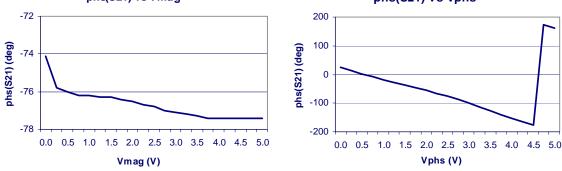
V _S	+8.0V
T-ambient	+25°C
RF	-20 dBm, 881 MHz
Control	ampctl = phsctl = +2.5V swapi = swapq = shut = 0 V

Product Specifications – RF

Parameters	Additional Test Conditions	Unit	Min.	Тур.	Max.
Frequency Range		MHz	800		1000
Input IP3		dBm		+40	
Amplitude Range		dB	-40		-20
Phase Range (continuous)		deg		180	
Phase Range		deg	-360		+360
PM (from amplitude control)	for ampctl from +0.5 to +4.5V	deg	-0.5	0	+0.5
AM (from phase control)	for phsctl from +0.5 to +4.5V	dB	-1.0	0	+1.0
Gain Flatness	BW = 50 MHz	dB		0.1	
Group Delay Flatness	BW = 50 MHz	pS		15	
Noise Figure		dB		30	
VSWR (RF In)	50 ohm reference	-		1.5:1	
VSWR (RF Out)	50 ohm reference	-		1.5:1	

Product Specifications – Miscellaneous


Parameters	Additional Test Conditions	Unit	Min.	Тур.	Max.
Control Voltage Range		V	0.5		4.5
Phase Control Slew Rate		deg/ns		10	
Amplitude Control Slew Rate		%/ns		50	
Shut-Down Attenuation		dB	70		
Logic Input Threshold	SWAPI, SWAPQ, SHUT	V	1.5		3.5
Shut-Down Settling Time	turn on or turn off	nS			50
Supply Voltage		V	+7.6	+8	+8.4
Supply Current		mA		150	
Device Thermal Resistance		°C/W		TBD	


The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC http://www.stanfordmicro.com

Phone: (800) SMI-MMIC

Typical Device Performance

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC http://www.stanfordmicro.com

Phone: (800) SMI-MMIC

Pin Out Description Additional Comments Pin # Function Description 5V CMOS levels SWAPI Phase swap control input (I-axis) 1 2 VCC Positive power supply GND 3 Ground 4 INP RF input (+) self-biasing; AC-couple 5 INN RF input (-) self-biasing; AC-couple 6 GND Ground 7 SWAPQ Phase swap control input (Q-axis) 5V CMOS levels 8 PHSCTL Phase control input self-biasing; apply +0.5 to +4.5V 9 VCC Positive power supply AMPCTL 10 Amplitude control input self-biasing; apply +0.5 to +4.5V GND 11 Ground OUTN RF output (-) self-biasing; AC-couple 12 OUTP 13 RF output (+) self-biasing; AC-couple GND 14 Ground 5V CMOS levels 15 SHUT Shutdown control input 16 VCC Positive power supply

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.

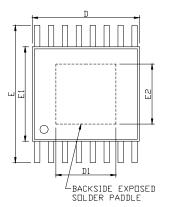
522 Almanor Ave., Sunnyvale, CA 94086

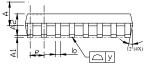
Phone: (800) SMI-MMIC

Caution: ESD Sensitive

Appropriate precaution in handling, packaging and testing devices must be observed.

Advanced Data Sheet SCP-1016 SiGe Polar Modulator

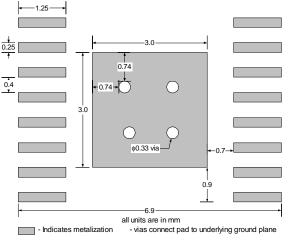

Dart Number Ordering Information


Part Number Ordering Information							
Part Number	Reel Size	Devices/Reel					
SCP-1016	TBD	TBD					


Part Symbolization

The part will be symbolized with a "TBD" marking designator on the top surface of the package.

Package Dimensions

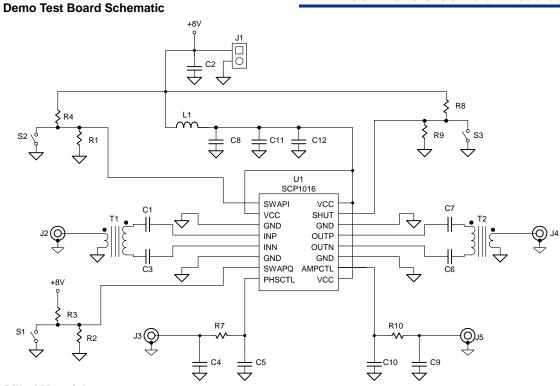

NOTE

- 1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS
- 2. TOLERANCE ±0.1 mm UNLESS OTHERWISE SPECIFIED 3. COPLANARITY : 0.1 mm
- 4. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

5. FOLLOWED FROM JEDEC MO-153

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES		
SIMBOLS	MIN	NOM	MAX	MIN	NOM	MAX
А			1.15			0.045
A1	0.00		0.10	0.000		0.004
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.008
D	4.90	5.00	5.10	0.193	0.197	0.201
D1		2.80			0.110	
E		6.40			0.252	
E1	4.30	4.40	4.50	0.169	0.173	0.177
E2		2.80			0.110	
e		0.65			0.026	
L	0.45	0.60	0.75	0.018	0.024	0.030
у			0.10			0.004
θ	0°		8°	0°		8°

Test PCB Pad Layout

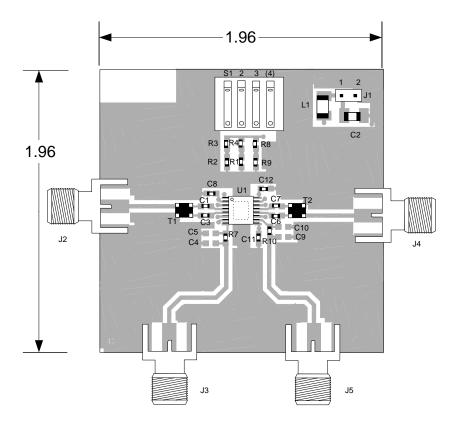


The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.

522 Almanor Ave., Sunnyvale, CA 94086

Phone: (800) SMI-MMIC

Bill of Materials


Component Designator	Value	Qty	Vendor	Part Number	Description
U1		1	SMDI	SCP-1016	Polar modulator
J1		1	Digikey-Sullins	S1312-02-ND	2 pin 0.1" power supply header
J2, J3, J4, J5		4	Johnson Components	142-0701-851	SMA end launch connectors
T1, T2		2	Panasonic	EHF-FD1618	Balun transformer
C2	1uF	1	Venkel	C1206Y5V160-105ZNE	1206 size capacitor
L1	1uH	1	Digikey-Panasonic	PCD1008TR-ND	1210 size inductor
S1, S2, S3		1	Digikey-Grayhill	GH1104-ND	Quad DIP Switch
C11	1nF	1	Venkel	C0603COG500-102JNE	0603 size bypass capacitor
C1, C3, C6, C7	12pF	4	Venkel	C0603COG500-120JNE	0603 size coupling capacitor
C4, C5, C9, C10	—				not placed
C8, C12	33pF	2	Venkel	C0603COG500-330JNE	0603 size bypass capacitor
R7, R10	0 ohm	2	Venkel	CR0603-16W-000T	0603 size resistor
R3, R4, R8	3 kohm	3	Venkel	CR0603-16W-302JT	0603 size pull-up resistor
R1, R2, R9	5.1 kohm	3	Venkel	CR0603-16W-512JT	0603 size pull-down resistor

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC http://www.stanfordmicro.com

Phone: (800) SMI-MMIC 6

Demo Test Board (Fully Assembled PCB)

Note: Dimensions in inches

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC http://www.stanfordmicro.com