DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

MIC184YM View Datasheet(PDF) - Micrel

Part Name
Description
Manufacturer
MIC184YM Datasheet PDF : 20 Pages
First Prev 11 12 13 14 15 16 17 18 19 20
MIC184
in most systems this will not be an issue.
Filter Capacitor Selection
When using a remote diode for temperature sensing, it is
sometimes desirable to use a filter capacitor between the
A2/T1 and GND pins of the MIC184. The use of this capaci-
tor is recommended in environments with a significant high
frequency noise (such as digital switching noise), or if long
wires are used to connect to the remote diode. The maximum
recommended total capacitance from the A2/T1 pin to GND
is 2700pF. This usually suggests the use of a 2200pF NP0
or C0G ceramic capacitor with a 10% tolerance.
If the remote diode is to be at a distance of more than 6" ~
12" from the MIC184, using a shielded cable (solid foil shield
microphone cable is a good choice) for the connections to the
diode can significantly help reduce noise pickup. Remember
to subtract the cable's conductor-to-shield capacitance from
the 2700pF maximum total capacitance.
Layout Considerations
Local Mode Only Applications:
If the MIC184 is not going to be used with an external diode,
the best layout is one which keeps it thermally coupled to the
subsystem(s) whose temperature it must monitor, while avoid-
ing any strong sources of EMI, RFI, or electrostatically coupled
noise. Two of the most common examples of such sources
are switching power supply transformers and CRTs.
Remote Mode Applications:
1. If the remote sensing capability of the
MIC184 will be used in an application, place the
MIC184 as close to the remote diode as pos-
sible, while taking care to avoid severe noise
sources (high frequency power transformers,
CRTs, memory and data busses, and the like).
2. Since any conductance from the various volt-
ages on the PC Board and the A2/T1 pin can
induce serious errors, it is good practice to guard
the remote diode’s emitter trace with a pair of
ground traces. These ground traces should be
returned to the MIC184’s own ground pin. They
should not be grounded at any other part of their
run. However, it is highly desirable to use these
guard traces to carry the diode’s own ground
return back to the ground pin of the MIC184,
thereby providing a Kelvin connection for the
base of the diode. See Figure 8.
Micrel
3. When using the MIC184 to sense the tempera-
ture of a processor or other device which has an
integral on-board “diode” (e.g., Intel’s Pentium®
III), connect the emitter and base of the remote
sensor to the MIC184 using the guard traces
and Kelvin return shown in Figure 8. The col-
lector of the remote “diode” is inaccessible to
the user on these types of chips. To allow for
this, the MIC184 has superb rejection of noise
appearing from collector to GND, as long as the
base to ground connection is relatively quiet.
4. Due to the small currents involved in the mea-
surement of the remote diode’s ΔVBE, it is
important to adequately clean the PC board after
soldering. This is most likely to show up as an
issue in some situations where water-soluble
soldering fluxes are used.
5. In general, wider traces for the ground and
A2/T1 pins will help reduce susceptibility to radi-
ated noise (wider traces are less inductive). Use
trace widths and spacing of 10 mils wherever
possible. Wherever possible, place a ground
plane under the MIC184, and under the connec-
tions from the MIC184 to the remote diode. This
will help guard against stray noise pickup.
6. Always place a good quality VDD bypass ca-
pacitor directly adjacent to, or underneath, the
MIC184. This part should be a 0.1µF ceramic
capacitor. Surface-mount parts provide the best
bypassing because of their low inductance.
7. When the MIC184 is being powered from par-
ticularly noisy power supplies, or from supplies
which may have sudden high-amplitude spikes
appearing on them, it can be helpful to add ad-
ditional power supply filtering. This should be
implemented as a 100Ω resistor in series with
the part’s VDD pin, and a 4.7µF, 6.3V electrolytic
capacitor from VDD to GND. See Figure 9.
May 2006
17
MIC184

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]