

QUAD PRECISION MICROPOWER CMOS VOLTAGE COMPARATOR WITH DRIVER

GENERAL DESCRIPTION

The ALD4303A/ALD4303 is a precision monolithic high performance quad voltage comparator with open drain output built with advanced silicon gate CMOS technology. It features very high typical input impedance of $10^{12}\Omega$; low input bias current of 10pA; very low power dissipation of 7.5µA per comparator; micropower operation; high output drive and single (+5V) or dual (±5V) power supply operation.

The input voltage range includes ground, making this comparator ideal for single supply low level signal detection with high source impedance. The ALD4303A/ALD4303 can be used in connection with other voltage comparator circuits such as the ALD2301/ALD2302/ALD4302 voltage comparators. The outputs can be connected to a higher external voltage than V+ and used in a wired-OR connection with other open drain circuits such as ALD2301/ALD2303. They can also be used with push-pull output types such as ALD2302/ALD4302 voltage comparators simultaneously with open drain comparators using a common V+. The ALD4303A/ALD4303 is ideal for a great variety of voltage comparator applications, especially micropower detection circuits requiring very low input currents, high output currents and low standby power.

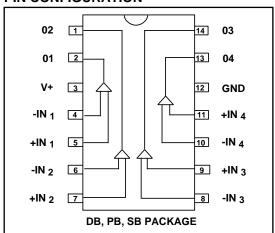
APPLICATIONS

- Sensor detection circuits
- PCMCIA instruments
- MOSFET driver
- High source impedance voltage comparison circuits
- Multiple limit window comparator
- Power supply voltage monitor
- · Photodetector sensor circuit
- High speed LED driver
- Oscillators
- Battery operated instruments
- · Remote signal detection
- Multiple relay drivers

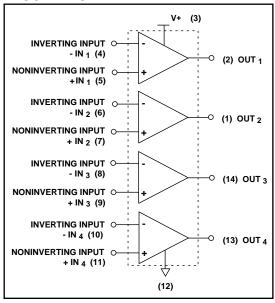
BENEFITS

- Extremely low power and high precision combination
- Built-in high input impedance buffer
- Built-in output driver with up to 60mA sink current

ORDERING INFORMATION


Operating Temperature Range *								
-55°C to +125°C	0°C to +70°C	0°C to +70°C						
14-Pin	14-Pin	14-Pin						
CERDIP	Small Outline	Plastic Dip						
Package	Package (SOIC)	Package						
ALD4303ADB	ALD4303ASB	ALD4303APB						
ALD4303DB	ALD4303SB	ALD4303PB						

^{*} Contact factory for industrial temperature range


FEATURES

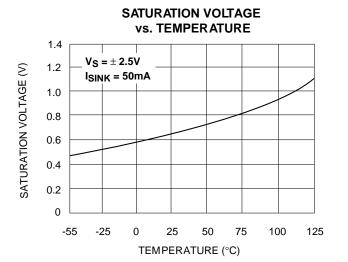
- 3V, 5V and 12V supply
- Guaranteed to drive 200Ω loads
- Fanout of 30LS TTL loads
- Guaranteed maximum supply current of 22μA per comparator
- Industry standard pinout of LM393 type
- Extremely low input bias currents -- 10pA
- Virtually eliminates source impedance effects
- Single (+5V) and dual supply (±5V) operation
- CMOS, NMOS and TTL compatible
- Open drain wired-OR outputs
- Compatible with push-pull outputs
- High output sinking current -- 60mA
- · Low supply current spikes
- High gain -- 100V/mV

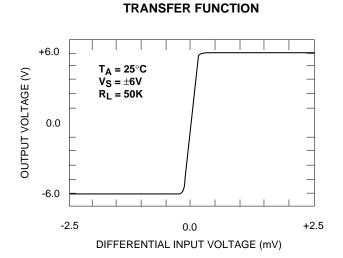
PIN CONFIGURATION

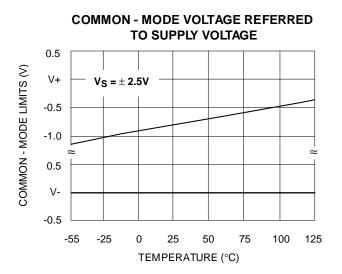
BLOCK DIAGRAM

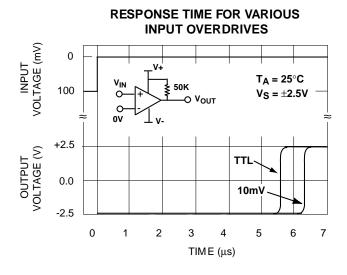
ABSOLUTE MAXIMUM RATINGS

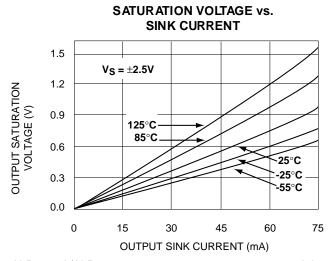
Supply voltage, V+		13.2V	
Differential input voltage range		-0.3V to V++0.3V	
Power dissipation		600 mW	
Operating temperature range	PB, SB package	0°C to +70°C	
	DB package	55°C to +125°C	
Storage temperature range -		-65°C to +150°C	
Lead temperature 10 seconds	±260°		

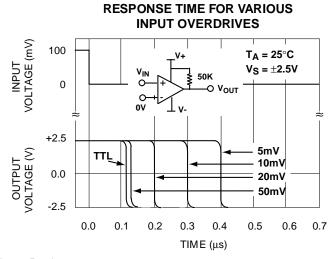

OPERATING ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ V+= +5V unless otherwise specified


		4303A		4303			Test		
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit	Conditions
Voltage Supply	V _S V+	±1.5 3		±6 12	±1.5 3		±6 12	V V	Dual Supplies Single Supply
Supply Current	IS		50	90		50	90	μΑ	RLOAD = ∞ 4 comparators
Voltage Gain	A _{VD}	10	100		10	100		V/mV	RLOAD ≥15KΩ
Input Offset Voltage	Vos		2	5.0 7.0		4	10.0 12.0	mV	RLOAD =1.5K Ω 0°C \leq T _A \leq 70°C
Input Offset Current ¹	I _{OS}		0.1	30 800		0.1	30 800	pA	$0^{\circ}C \le T_A \le 70^{\circ}C$
Input Bias Current ¹	I _B		0.1	30 1000		0.1	30 1000	pA	$0^{\circ}C \le T_{A} \le 70^{\circ}C$
Common Mode Input Voltage Range ²	V _{ICR}	-0.3		V+-1.5	-0.3		V+ -1.5	V	
Low Level Output Voltage	V _{OL}		0.18	0.4		0.18	0.4	V	I _{SINK} =12mA V _{INPUT} =1V Differential
Low Level Output Current	l _{OL}	24	60		24	60		mA	V _{OL} =1.0V
High Level Leakage Current	Ιιн		0.1	20		0.1	20	nA	V _{OH} = 5.0V
Response Time ²	t _{RP}		6.5			6.5		μs	$R_L = 50 K\Omega$ $C_L = 15 pF$ $10 mV Input$ $Step/10 mV$ $Overdrive$
			5			5		μs	$RL = 50K\Omega$ $C_L = 15pF$ $TTL- Level Input$ $Step$


Notes:


Consists of junction leakage currents
 Sample tested parameters

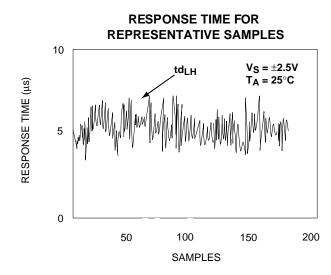

TYPICAL PERFORMANCE CHARACTERISTICS

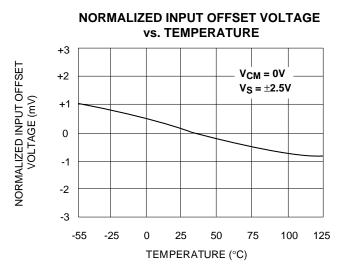


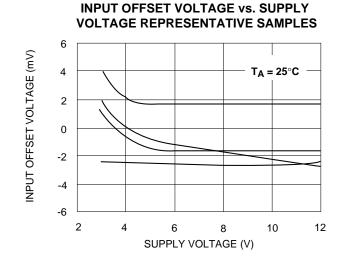
TYPICAL PERFORMANCE CHARACTERISTICS

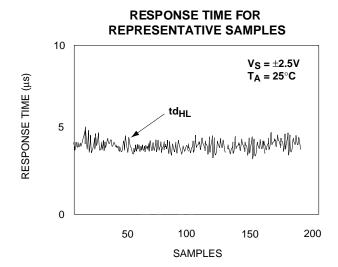
6.0

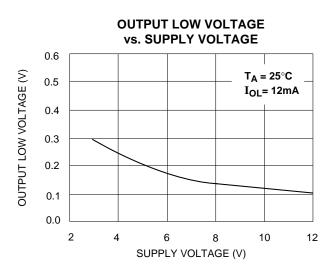
8.0

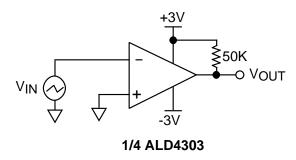

SUPPLY VOLTAGE (V)

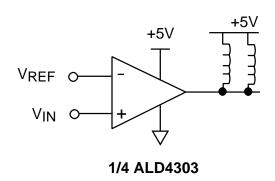

10.0


12.0

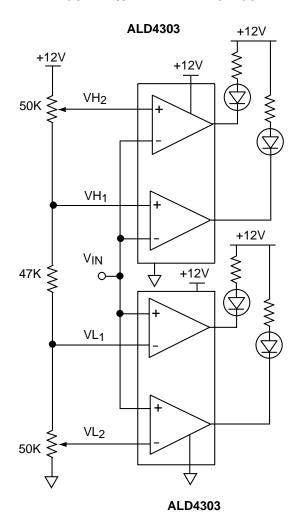

2.0


4.0

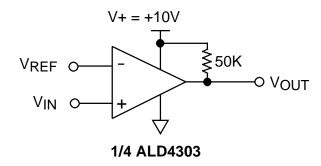




TYPICAL APPLICATIONS


ZERO CROSSING DETECTOR

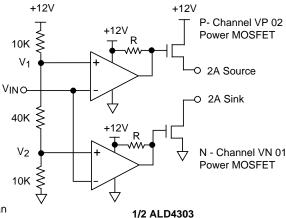
MULTIPLE RELAY DRIVE



DOUBLE QUAD LIMIT WINDOW COMPARATOR

 VL_1 and VH_1 first limit window send warning VL_2 and VH_2 second limit window execute system cutoff

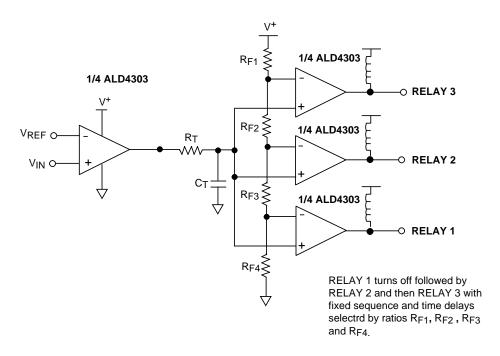
VOLTAGE LEVEL TRANSLATOR



$$V_{REF} = 1.4V$$
 for TTL input
 $V_{REF} = \frac{V^{+}}{2}$ for CMOS input

Output $V_{\mbox{\scriptsize OUT}}$ swings from rail-to-rail

TYPICAL APPLICATIONS


PUSH-PULL COMPLEMENTARY POWER MOSFET DRIVER

$R \ge 50 \text{ K}\Omega$

This circuit eliminates crossover current in the complementary power transistors. The outputs can be used to source and sink different loads or tied together to provide push-pull drive of the same load.

TIME DELAY GENERATOR

Design & Operating Notes:

- 1. In order to minimize stray oscillation, all unused inputs must be tied to ground.
- 2. The input bias and offset currents are essentially input protection diode reverse bias leakage currents, and are typically less than 1 pA at room temperature. These currents are a function of ambient temperature, and would have to be considered in applications where very high source impedance or high accuracy are involved.
- 3. The high output sinking current of 60mA for each output offers flexibility in many applications, as a separate buffer or driver would not be necessary to drive the intended load. However, as the circuit normally operates close to ambient temperature due to its very low power consumption, thermal effects caused by large output current transients must be considered in certain applications.