
INTEGRATED CIRCUITS

Product data sheet Supersedes data of 2003 Apr 01 2004 Sep 29

GTL2002

FEATURES

- 2-bit bi-directional low voltage translator
- Allows voltage level translation between 1.0 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V, and 5 V buses which allows direct interface with GTL, GTL+, LVTTL/TTL and 5 V CMOS levels
- Provides bi-directional voltage translation with no direction pin
- Low 6.5 Ω RDS_{ON} resistance between input and output pins (Sn/Dn)
- Supports hot insertion
- No power supply required Will not latch up
- 5 V tolerant inputs
- Low stand-by current
- Flow-through pinout for ease of printed circuit board trace routing
- ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per JESD22-A115, and 1000 V per JESD22-C101
- Packages offered: SO8, TSSOP8 (MSOP8), VSSOP8

APPLICATIONS

- Any application that requires bi-directional or unidirectional voltage level translation from any voltage between 1.0 V and 5.0 V to any voltage between 1.0 V and 5.0 V
- The open drain construction with no direction pin is ideal for bi-directional low voltage (e.g., 1.0 V, 1.2 V, 1.5 V, or 1.8 V) processor I²C port translation to the normal 3.3 V or 5.0 V I²C-bus signal levels or GTL/GTL+ translation to LVTTL/TTL signal levels.

ORDERING INFORMATION

DESCRIPTION

The Gunning Transceiver Logic — Transceiver Voltage Clamps (GTL–TVC) provide high-speed voltage translation with low ON-state resistance and minimal propagation delay. The GTL2002 provides 2 NMOS pass transistors (Sn and Dn) with a common gate (G_{REF}) and a reference transistor (S_{REF} and D_{REF}). The device allows bi-directional voltage translations between 1.0 V and 5.0 V without use of a direction pin.

When the Sn or Dn port is LOW the clamp is in the ON-state and a low resistance connection exists between the Sn and Dn ports. Assuming the higher voltage is on the Dn port, when the Dn port is high, the voltage on the Sn port is limited to the voltage set by the reference transistor (S_{REF}). When the Sn port is high, the Dn port is pulled to V_{CC} by the pull up resistors. This functionality allows a seamless translation between higher and lower voltages selected by the user, without the need for directional control.

All transistors have the same electrical characteristics and there is minimal deviation from one output to another in voltage or propagation delay. This is a benefit over discrete transistor voltage translation solutions, since the fabrication of the transistors is symmetrical. Because all transistors in the device are identical, S_{REF} and D_{REF} can be located on any of the other two matched Sn/Dn transistors, allowing for easier board layout. The translator's transistors provides excellent ESD protection to lower voltage devices and at the same time protect less ESD resistant devices.

PACKAGES	TEMPERATURE RANGE	ORDER CODE	TOPSIDE MARK	DWG NUMBER
8-Pin Plastic SO	–40 °C to +85 °C	GTL2002D	GTL2002	SOT96–1
8-Pin Plastic TSSOP (MSOP)	–40 °C to +85 °C	GTL2002DP	2002	SOT505-1
8-Pin Plastic VSSOP	–40 °C to +85 °C	GTL2002DC	2002	SOT765-1

Standard packing quantities and other packaging data is available at www.standardproducts.philips.com/packaging.

GTL2002

PIN CONFIGURATION

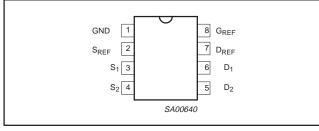


Figure 1. SO8 and TSSOP8 pinning

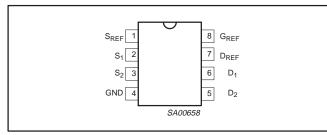


Figure 2. VSSOP8 pinning

PIN DESCRIPTION

PIN NU	MBER		
SO8 and TSSOP8	VSSOP8	SYMBOL	NAME AND FUNCTION
1	4	GND	Ground (0 V)
2	1	S _{REF}	Source of reference transistor
3, 4	2, 3	Sn	Port S_1 and Port S_2
5, 6	5, 6	D _n	Port D_1 and Port D_2
7	7	D _{REF}	Drain of reference transistor
8	8	G _{REF}	Gate of reference transistor

FUNCTION TABLE

HIGH-to-LOW translation assuming Dn is at the higher voltage level

G _{REF}	D _{REF}	S _{REF}	In-Dn	Out-Sn	Transistor
Н	Н	0 V	Х	Х	Off
Н	Н	V _{TT}	Н	V _{TT} ¹	On
Н	Н	V _{TT}	L	L ²	On
L	L	0 – V _{TT}	Х	Х	Off

H = HIGH voltage level

L = LOW voltage level

```
X = Don't Care
```

NOTES:

- 1. Sn is not pulled up or pulled down.
- 2. Sn follows the Dn input LOW.
- 3. G_{REF} should be at least 1.5 V higher than S_{REF} for best translator operation.
- 4. V_{TT} is equal to the S_{REF} voltage.

FUNCTION TABLE

LOW-to-HIGH translation	assuming Dn is at the	higher voltage level
	accurring bit to at the	ingrior voltage level

G _{REF}	D _{REF}	S _{REF}	In-Sn	Out-Dn	Transistor
Н	Н	0 V	Х	Х	Off
Н	Н	V _{TT}	V _{TT}	H ¹	nearly off
Н	Н	V _{TT}	L	L ²	On
L	L	$0 - V_{TT}$	Х	Х	Off

H = HIGH voltage level

L = LOW voltage level

X = Don't Care

NOTES:

- 1. Dn is pulled up to V_{CC} through an external resistor.
- 2. Dn follows the Sn input LOW.
- 3. G_{REF} should be at least 1.5 V higher than S_{REF} for best translator operation.
- 4. V_{TT} is equal to the S_{REF} voltage.

CLAMP SCHEMATIC

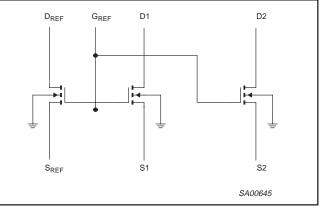


Figure 3. Clamp schematic

2004 Sep 29

2-bit bi-directional low voltage translator

APPLICATIONS

Bi-directional translation

For the bi-directional clamping configuration, higher voltage to lower voltage or lower voltage to higher voltage, the G_{REF} input must be connected to D_{REF} and both pins pulled to HIGH side V_{CC} through a pull-up resistor (typically 200 k Ω). A filter capacitor on D_{REF} is recommended. The processor output can be totem pole or open drain (pull-up resistors may be required) and the chipset output can be totem pole or open drain (pull-up resistors may be required) and the chipset output can be totem pole or open drain (pull-up resistors may be required) and the chipset output can be totem pole or open drain (pull-up resistors may be required) and the chipset output can be totem pole or open drain (pull-up resistors are required to pull the Dn outputs to V_{CC}). However, if either output is totem pole, data must be uni-directional or the outputs must be 3-statable and the outputs must be controlled by some direction control mechanism to prevent HIGH-to-LOW contentions in either direction. If both outputs are open drain, no direction control is needed. The opposite side of the reference transistor (S_{REF}) is connected to the processor core power supply voltage. When D_{REF} is connected through a 200 k Ω resistor to a 3.3 V to 5.5 V V_{CC} supply and S_{REF} is set between 1.0 V to $V_{CC} - 1.5$ V, the output of each Sn has a maximum output voltage equal to S_{REF} and the output of each Dn has a maximum output voltage equal to V_{CC} .

TYPICAL BI-DIRECTIONAL VOLTAGE TRANSLATION 1.8 V 5 V 1.5 V 200 kO GTL2002 1.2 V TOTEM POLE OR OPEN DRAIN I/O 1.0 V Τ GND GREF SREF VCORE DREF V_{CC} S1 D1 CPU I/O CHIPSET I/O D2 S2 3.3 V INCREASE BIT SIZE BY USING 10 BIT GTL2010 OR 22 BIT GTL2000 V_{CC} S3 D3 CHIPSET I/O S4 D4 S5 D5 Sn Dn SA00642

Uni-directional down translation

For uni-directional clamping, higher voltage to lower voltage, the G_{REF} input must be connected to D_{REF} and both pins pulled to the higher side V_{CC} through a pull-up resistor (typically 200 k Ω). A filter capacitor on D_{REF} is recommended. Pull-up resistors are required if the chipset I/O are open drain. The opposite side of the reference transistor (S_{REF}) is connected to the processor core supply voltage. When D_{REF} is connected through a 200 k Ω resistor to a 3.3 V to 5.5 V V_{CC} supply and S_{REF} is set between 1.0 V to V_{CC} – 1.5 V, the output of each Sn has a maximum output voltage equal to S_{REF} .

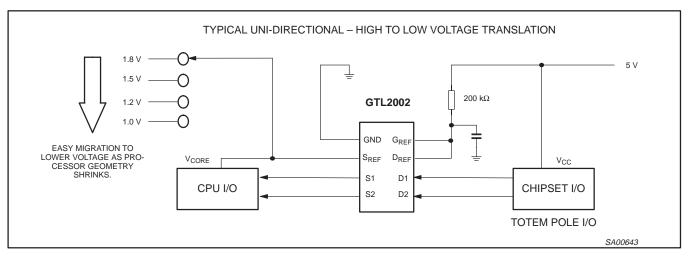


Figure 5. Uni-directional down translation, to protect low voltage processor pins

Uni-directional up translation

For uni-directional up translation, lower voltage to higher voltage, the reference transistor is connected the same as for a down translation. A pull-up resistor is required on the higher voltage side (Dn or Sn) to get the full HIGH level, since the GTL–TVC device will only pass the reference source (S_{REF}) voltage as a HIGH when doing an up translation. The driver on the lower voltage side only needs pull-up resistors if it is open drain.

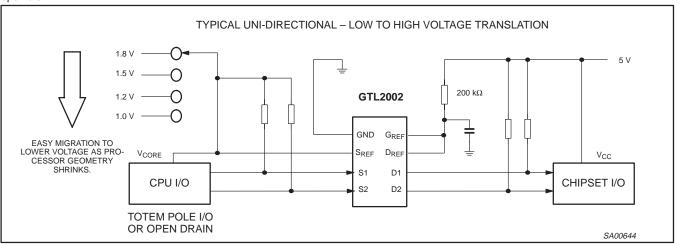


Figure 6. Uni-directional up translation, to higher voltage chip sets

GTL2002

GTL2002

Sizing pull-up resistor

The pull-up resistor value needs to limit the current through the pass transistor when it is in the "on" state to about 15 mA. This will guarantee a pass voltage of 260 mV to 350 mV. If the current through the pass transistor is higher than 15 mA, the pass voltage will also be higher in the "on" state. To set the current through each pass transistor at 15 mA, the pull-up resistor value is calculated as follows:

Pull-up voltage (V)-0.35 V Resistor value $(\Omega) =$ 0.015 A

The table below summarizes resistor values for various reference voltages and currents at 15 mA and also at 10 mA and 3 mA. The resistor value shown in the +10 % column or a larger value should be used to ensure that the pass voltage of the transistor would be 350 mV or less. The external driver must be able to sink the total current from the resistors on both sides of the GTL-TVC device at 0.175 V, although the 15 mA only applies to current flowing through the GTL-TVC device. See Application Note AN10145-01 Bi-Directional Voltage Translators for more information.

PULL-UP RESISTOR VALUES

	PULL-UP RESISTOR VALUE (Ω)									
V017405	15 ו	mA	10	mA	3 n	nA				
VOLTAGE	NOMINAL	+ 10 %	NOMINAL	+ 10 %	NOMINAL	+ 10 %				
5.0 V	310	341	465	512	1550	1705				
3.3 V	197	217	295	325	983	1082				
2.5 V	143	158	215	237	717	788				
1.8 V	97	106	145	160	483	532				
1.5 V	77	85	115	127	383	422				
1.2 V	57	63	85	94	283	312				

NOTES:

1. Calculated for $V_{OL} = 0.35 V$

2. Assumes output driver $V_{OL} = 0.175$ V at stated current 3. +10 % to compensate for V_{DD} range and resistor tolerance.

ABSOLUTE MAXIMUM RATINGS^{1, 2, 3}

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{SREF}	DC source reference voltage		-0.5 to +7.0	V
V _{DREF}	DC drain reference voltage		-0.5 to +7.0	V
V _{GREF}	DC gate reference voltage		-0.5 to +7.0	V
V _{Sn}	DC voltage Port S _n		-0.5 to +7.0	V
V _{Dn}	DC voltage Port D _n		-0.5 to +7.0	V
I _{REFK}	DC diode current on reference pins	V ₁ < 0 V	-50	mA
I _{SK}	DC diode current Port S _n	V ₁ < 0 V	-50	mA
I _{DK}	DC diode current Port Dn	V _I < 0 V	-50	mA
I _{MAX}	DC clamp current per channel	Channel in ON-state	±128	mA
T _{stg}	Storage temperature range		-65 to +150	°C

NOTES:

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the 1. device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction 2. temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C.

3. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	LIM	UNIT	
STWBOL	FARAWETER	CONDITIONS	Min Max	Max	UNIT
V _{I/O}	Input/output voltage (Sn, Dn)		0	5.5	V
V _{SREF}	DC source reference voltage ¹		0	5.5	V
V _{DREF}	DC drain reference voltage		0	5.5	V
V _{GREF}	DC gate reference voltage		0	5.5	V
IPASS	Pass transistor current		_	64	mA
T _{amb}	Operating ambient temperature range	In free air	-40	+85	°C

NOTE:

1. $V_{SREF} \leq V_{DREF} -$ 1.5 V for best results in level shifting applications.

ELECTRICAL CHARACTERISTICS

Over recommended operating free-air temperature range (unless otherwise noted)

CYMDOL			TEST CONDITIONS		LIMITS				
SYMBOL	PARAMETER		TEST CONDITIONS		MIN	TYP ¹	MAX		
V _{OL}	LOW-level output voltage	V_{DD} = 3.0 V; V_{SRI} I_{clamp} = 15.2 mA	_{EF} = 1.365 V; V _{Sn} oi	· V _{Dn} = 0.175 V;	_	260	350	mV	
V _{IK}	Input clamp voltage	l _l = -18 mA	V _{GREF} = 0 V		—	—	-1.2	V	
I _{IH}	Gate input leakage	V _I = 5 V	V _{GREF} = 0 V		—	—	5	μA	
C _{I(GREF)}	Gate capacitance	$V_{I} = 3 V \text{ or } 0 V$	-		—	19.4	—	pF	
C _{IO(OFF)}	Off capacitance	$V_{O} = 3 V \text{ or } 0 V$	V _{GREF} = 0 V		—	7.4	_	pF	
C _{IO(ON)}	On capacitance	$V_{O} = 3 V \text{ or } 0 V$	V _{GREF} = 3 V	V _{GREF} = 3 V		18.6	—	pF	
			V _{GREF} = 4.5 V		—	3.5	5		
			V _{GREF} = 3 V		—	4.4	7		
		$V_{I} = 0 V$	V _{GREF} = 2.3 V	I _O = 64 mA	_	5.5	9	Ω	
- 2	On maintanan		V _{GREF} = 1.5 V	1	_	67	105		
r _{on} 2	On-resistance		V _{GREF} = 1.5 V	I _O = 30 mA	—	9	15	Ω	
			V _{GREF} = 4.5 V		—	7	10		
		$V_1 = 2.4 V$	V _{GREF} = 3 V	l _O = 15 mA	—	58	80	Ω	
		V _I = 1.7 V	V _{GREF} = 2.3 V]	_	50	70		

NOTES:

1. All typical values are measured at T_{amb} = 25 $^\circ C$

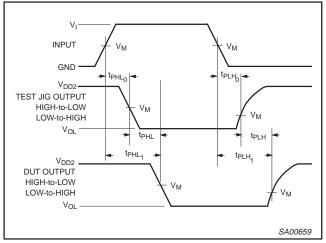
Measured by the voltage drop between the Sn and the Dn terminals at the indicated current through the switch. On-state resistance is determined by the lowest voltage of the two (Sn or Dn) terminals.

GTL2002

GTL2002

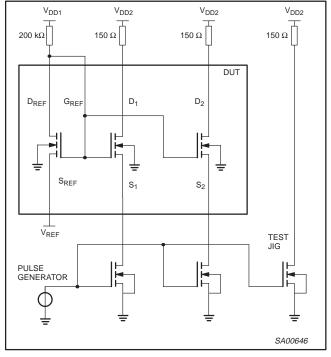
AC CHARACTERISTICS FOR TRANSLATOR TYPE APPLICATIONS

 $V_{REF} = 1.365 \text{ V to } 1.635 \text{ V}; V_{DD1} = 3.0 \text{ V to } 3.6 \text{ V}; V_{DD2} = 2.36 \text{ V to } 2.64 \text{ V}; \text{GND} = 0 \text{ V}; t_r = t_f \leq 3.0 \text{ ns}. \text{ Refer to the Test Circuit diagram.}$


SYMBOL	PARAMETER	WAVEFORM	T _{amb} =	-40 °C to ⊦	-85 °C	UNIT
			MIN	TYP ¹	MAX	
t _{PLH} 2	Propagation delay Sn to Dn; Dn to Sn		0.5	1.5	5.5	ns

NOTES:

All typical values are measured at V_{DD1} = 3.3 V, V_{DD2} = 2.5 V, V_{REF} = 1.5 V and T_{amb} = 25 °C.
 Propagation delay guaranteed by characterization.
 C_{ON(max)} of 30 pF and a C_{OFF(max)} of 15 pF is guaranteed by design.


AC WAVEFORMS

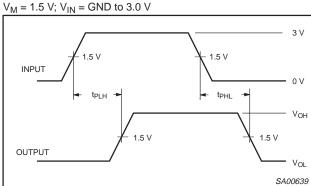
 $V_{M} = 1.5 \text{ V}; V_{IN} = \text{GND to } 3.0 \text{ V}$

Waveform 1. The Input (S_n) to Output (D_n) propagation delays

TEST CIRCUIT

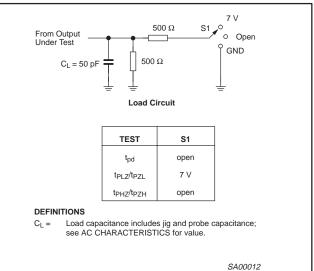
Waveform 2. Load circuit

AC CHARACTERISTICS FOR CBT TYPE APPLICATION


 $GND = 0 V; t_{R;} C_{L} = 50 pF$

SYMBOL	PARAMETER DESCRIPTION	T _{amb} : G _R	UNITS		
		Min	Mean	Max	
t _{pd}	Propagation delay ¹	—	—	250	ps

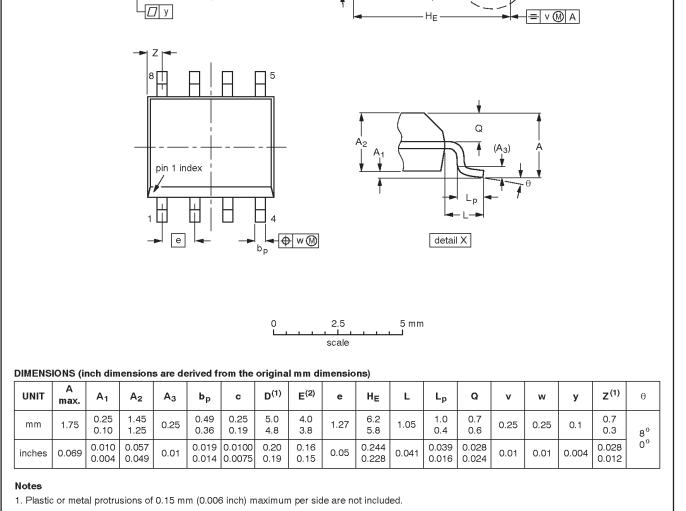
NOTES:


1. This parameter is warranted but not production tested. The propagation delay is based on the RC time constant of the typical on-state resistance of the switch and a load capacitance of 50 pF, when driven by an ideal voltage source (zero output impedance).

AC WAVEFORMS

Waveform 3. Input (Sn) to Output (Dn) Propagation Delays

TEST CIRCUIT AND WAVEFORMS


Waveform 4. Load circuit

SO8:

2-bit bi-directional low voltage translator

plastic small outline package; 8 leads; body width 3.9 mm

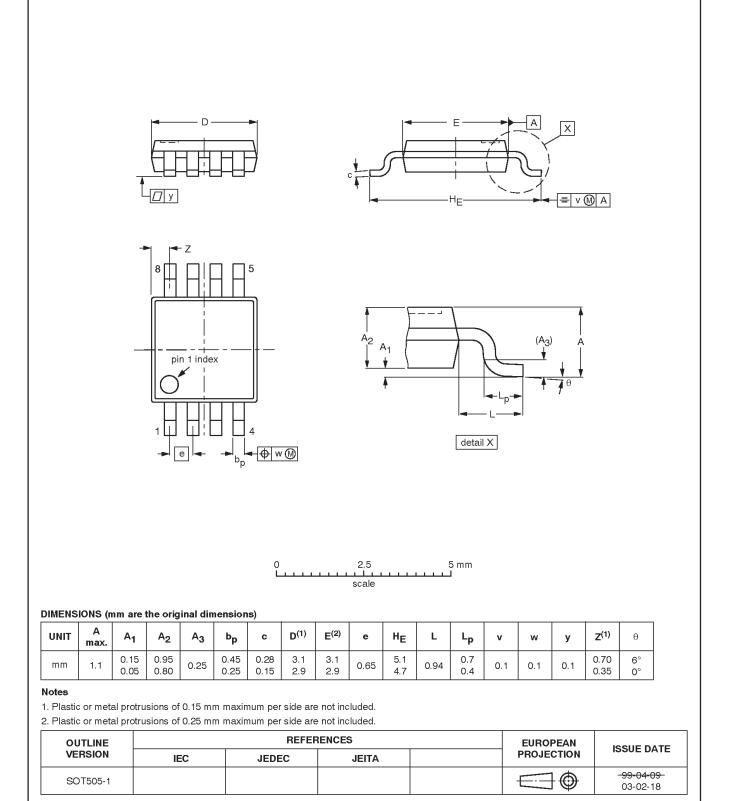
D

2. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN		ISSUE DATE	
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT96-1	076E03	MS-012				-99-12-27 03-02-18	

GTL2002

SOT96-1

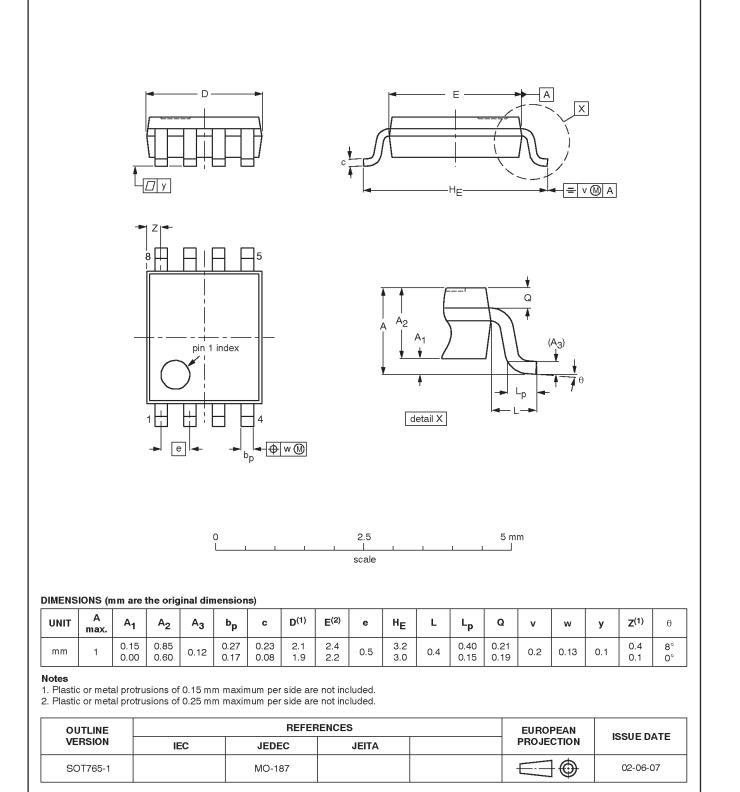

A

Х

TSSOP8:

2-bit bi-directional low voltage translator

plastic thin shrink small outline package; 8 leads; body width 3 mm


GTL2002

SOT505-1

VSSOP8:

2-bit bi-directional low voltage translator

plastic very thin shrink small outline package; body width 2.3 mm

SOT765-1

GTL2002

REVISION HISTORY

Philips Semiconductors

Rev	Date	Description		
_3	20040929	9 Product data (9397 750 13058). Supersedes data of 2003 Apr 01 (9397 750 11349).		
Modifications:		Modifications:		
		 "Features" section on page 2, last bullet: add "(MSOP8)" 		
		• "Ordering information" table on page 2: add "(MSOP)" to cell 8-Pin Plastic TSSOP in Packages column.		
		 Add VSSOP8 package offering. 		
_2	20030401	Product data (9397 750 11349); ECN 853-2214 29603 Dated 28 February 2003. Supersedes data dated 2000 Aug 16 (9397 750 07417).		
_1	20000816	Product data (9397 750 07417); ECN 853-2214 24367 dated 2000 Aug 16.		

GTL2002

Data sheet status

Level	Data sheet status ^[1]	Product status ^{[2] [3]}	Definitions
I	Objective data sheet	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data sheet	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
111	Product data sheet	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax:

sales.addresses@www.semiconductors.philips.com

For sales offices addresses send e-mail to:

Fax: +31 40 27 24825

All rights reserved. Printed in U.S.A.

© Koninklijke Philips Electronics N.V. 2004

Date of release: 09-04

9397 750 13058

Let's make things better.

Document order number:

PHILIPS