DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4517B
 LSI
 Dual 64-bit static shift register

Product specification
File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF4517B consists of two identical, independent 64-bit static shift registers. Each register has separate clock (CP), data input (D), parallel input-enable/output-enable (PE/EO) and four 3-state outputs of the 16th, 32nd, 48th and 64th bit positions $\left(\mathrm{O}_{16}\right.$ to $\left.\mathrm{O}_{64}\right)$. Data at the D input is entered into the first bit on the LOW to HIGH transition of the clock, regardless of the state of $\mathrm{PE} / \overline{\mathrm{EO}}$.

When PE/EO is LOW the outputs are enabled and the device is in the 64-bit serial mode.

When PE/EO is HIGH the outputs are disabled (high impedance OFF-state), the 64-bit shift register is divided into four 16-bit shift registers with $\mathrm{D}, \mathrm{O}_{16}, \mathrm{O}_{32}$ and O_{48} as data inputs of the 1st, 17th, 33rd, and 49th bit respectively. Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

Fig. 1 Functional diagram.

FAMILY DATA, IDD LIMITS category LSI
See Family Specifications

Fig. 2 Pinning diagram.

```
HEF4517BP(N): 16-lead DIL; plastic (SOT38-1)
HEF4517BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)
HEF4517BT(D): 16-lead SO; plastic (SOT109-1)
( ): Package Designator North America
```


PINNING

$\mathrm{CP}_{\mathrm{A}}, \mathrm{CP}_{\mathrm{B}}$	clock inputs
$\mathrm{PE} / \overline{E O}_{A}, \mathrm{PE} / \overline{E O}_{\mathrm{B}}$	parallel input-enable/output-enable inputs
$\mathrm{D}_{\mathrm{A}}, \mathrm{D}_{\mathrm{B}}$	data inputs
$\mathrm{O}_{16 \mathrm{~A}}, \mathrm{O}_{32 \mathrm{~A}}, \mathrm{O}_{48 \mathrm{~A}}$	3-state outputs/inputs
$\mathrm{O}_{16 \mathrm{~B}}, \mathrm{O}_{32 \mathrm{~B}}, \mathrm{O}_{48 \mathrm{~B}}$	3-state outputs/inputs
$\mathrm{O}_{64 \mathrm{~A}}, \mathrm{O}_{64 \mathrm{~B}}$	3-state outputs

INPUTS			INPUTS／OUTPUTS				MODE
CP	D	PE／EO	O_{16}	O_{32}	O_{48}	O_{64}	
\digamma	data entered into 1st bit	L	content of 16th bit displayed	content of 32nd bit displayed	content of 48th bit displayed	content of 64th bit displayed	One 64－bit shift register．The content of the shift register is shifted over one stage
\digamma	data entered into 1st bit	H	data at O_{16} entered into 17th bit	data at O_{32} entered into 33rd bit	data at O_{48} entered into 49th bit	remains in ＇Z＇state	Four 16－bit shift register．The content of the shift registers is shifted over one stage．
2	X	L	no change				
2	X	H	Z	Z	Z	Z	no change

Notes
1． $\mathrm{H}=\mathrm{HIGH}$ state（the more positive voltage）
L＝LOW state（the less positive voltage）
$\mathrm{X}=$ state is immaterial
G
$\mathrm{Z}=$ high impedance state
$\digamma=$ positive－going transition
＝negative－going transition

Dual 64-bit static shift register

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

	$\mathbf{V}_{\text {DD }}$	TYPICAL FORMULA FOR P $(\mu \mathrm{W})$	
Dynamic power	5	$7000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$28000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$70000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
			$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)
			$\sum\left(\mathrm{f}_{\mathrm{O}} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ \mathrm{~V} \end{gathered}$	SYMBOL	MIN. TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{CP} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 220 \\ 85 \\ 60 \end{array}$	$\begin{aligned} & 440 \\ & 170 \\ & 120 \end{aligned}$	ns ns ns	$\begin{aligned} 193 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 74 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 52 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tplH	$\begin{array}{r} 190 \\ 75 \\ 50 \end{array}$	$\begin{aligned} & 380 \\ & 150 \\ & 100 \end{aligned}$	ns ns ns	$\begin{aligned} 163 \mathrm{~ns} & +(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 64 \mathrm{~ns} & +(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 42 \mathrm{~ns} & +(0,16 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \end{aligned}$
Output transition times HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {THL }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {TLLH }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	120 60 40	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$

Dual 64-bit static shift register

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD} V	SYMBOL	MIN.	TYP.	MAX.		
Minimum clock pulse width; LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {WCPL }}$		$\begin{aligned} & 95 \\ & 40 \\ & 30 \end{aligned}$	190 80 60	ns ns ns	see also waveforms Fig. 4.
Set-up times $\mathrm{O}_{\mathrm{n}}, \mathrm{D} \rightarrow \mathrm{CP}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	t_{su}	$\begin{aligned} & 30 \\ & 25 \\ & 20 \end{aligned}$	$\begin{array}{r} 10 \\ 5 \\ 5 \end{array}$		ns ns ns	
Hold time $\mathrm{O}_{\mathrm{n}}, \mathrm{D} \rightarrow \mathrm{CP}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {hold }}$	45 30 25	$\begin{aligned} & 15 \\ & 10 \\ & 10 \end{aligned}$		ns ns ns	
3-state propagation delays Output disable times $\mathrm{PE} / \overline{\mathrm{EO}} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PHZ }}$		$\begin{aligned} & 40 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 80 \\ & 60 \\ & 50 \end{aligned}$	ns ns ns	
LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tplz		$\begin{aligned} & 50 \\ & 30 \\ & 25 \end{aligned}$	100 60 50	ns ns ns	
Output enable times $\mathrm{PE} / \overline{\mathrm{EO}} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PZH }}$		$\begin{aligned} & 45 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 90 \\ & 50 \\ & 40 \end{aligned}$	ns ns ns	
LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PZL }}$		$\begin{aligned} & 60 \\ & 30 \\ & 25 \end{aligned}$	120 60 50	ns ns ns	
Maximum clock pulse frequency	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{f}_{\text {max }}$	8	$\begin{array}{r} 5 \\ 12 \\ 16 \end{array}$		MHz MHz MHz	

Fig. 4 Waveforms showing minimum clock pulse width, set-up and hold times for O_{n} (as data input) and D to CP .

