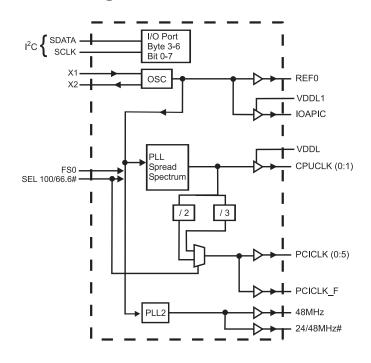


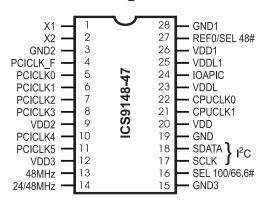
Pentium/Pro™ System Clock Chip

General Description

The ICS9148-47 is part of a reduced pin count two-chip clock solution for designs using an Intel BX style chipset. Companion SDRAM buffers are ICS9179-11 and -12.


There are two PLLs, with the first PLL capable of spread spectrum operation. Spread spectrum typically reduces system EMI by 8-10dB. The second PLL provides support for USB (48MHz) and 24MHz requirements. CPU frequencies up to 100MHz are supported.

The I²C interface allows stop clock programming, frequency selection, and spread spectrum operation to be programmed. Clock outputs include two CPU (2.5V or 3.3V), seven PCI (3.3V), one REF (3.3V), one IOAPIC (2.5V or 3.3V), one 48MHz, and one selectable 48/24MHz.


Features

- Generates system clocks for CPU, PCI, IOAPIC, 14.314 MHz, 48 and 24MHz.
- Supports single or dual processor systems
- Skew from CPU (earlier) to PCI clock 1 to 4ns
- Separate 2.5V and 3.3V supply pins
- 2.5V outputs: CPU, IOAPIC
- 3.3V outputs: PCI, REF
- No power supply sequence requirements
- 28 pin SOIC
- Spread Sectrum operation optional for PLL1
- CPU frequencies to 100MHz are supported.

Block Diagram

Pin Configuration

28 pin SOIC

Power Groups

VDD = Supply for PLL core VDD1 = REF0, X1, X2 VDD2 = PCICLK_F, PCICLK (0:5) VDD3 = 48MHz VDDL = CPUCLK (0:1) VDDL1 = IOAPIC

Ground Groups

GND = Ground Source Core GND1 = REF0, X1, X2 GND2 = PCICLK_F, PCICLK (0:5) GND3=48MHz GNDL=CPUCLK (0:1)

Pentium is a trademark on Intel Corporation.

ICS9148-47

Pin Descriptions

PIN NUMBER	PIN NAME	TYPE	DESCRIPTION
1	X1	IN	XTAL_IN 14.318MHz Crystal input, has internal 33pF load cap and feed back resistor from X2
2	X2	OUT	XTAL_OUT Crystal output, has internal load cap 33pF
3	GND2	PWR	Ground for PCI outputs
4	PCICLK_F	OUT	Free Running PCI output
5, 6, 7, 8, 10, 11	PCICLK (0:5)	OUT	PCI clock outputs. TTL compatible 3.3V
6, 9	VDD2	PWR	Power for PCICLK outputs, nominally 3.3V
12	VDD3	PWR	Poer for 48MHz
13	48MHz	OUT	Fixed CLK output @ 48MHz
14	24/48MHz	OUT	Fixed CLK output; 24MHz if pin 27 =1 at power up, 48MHz if pin 27=0 at power up.
15	GND3	PWR	Ground for 48MHz
16	SEL100/66.6#	IN	Select pin for enabling 100MHz or 66.6MHz H=100MHz, L=66.6MHz (PCI always synchronous 33.3MHz)
17	SCLK	IN	Clock input for I ² C input
18	SDATA	IN	Data input for I ² C input
19	GND	PWR	Ground for CPUCLK (0:1)
20	VDD	PWR	Power for PLL core
21, 22	CPUCLK (1:0)	OUT	CPU and Host clock outputs nominally 2.5V
23	VDDL	PWR	Power for CPU outputs, nominally 2.5V
24	IOAPIC	OUT	IOAPIC clock output 14.318MHz.
25	VDDL	PWR	Power for IOAPIC
26	VDD1	PWR	Power for REF outputs.
27	REF0/SEL 48#	OUT/IN	14.318MHz clock output/Latched input at power up. When low, pin 14 is 48MHz.
28	GND1	PWR	Ground for REF outputs, X1, X2.

General I²C serial interface information

The information in this section assumes familiarity with I²C programming. For more information, contact ICS for an I²C programming application note.

How to Write:

- Send the address D2(H).
- Send two additional dummy bytes, a command code and byte count.
- Send the desired number of data bytes.

See the diagram below:

Clock Generator Address (7 bits) A(6:0) & R/W#	ACK	+ 8 bits dummy command code	ACK	+ 8 bits dummy Byte count	ACK	Data Byte 1	ACK	Data Byte N	ACK
D2(H)				Count					

Note that the acknowledge bit is sent by the clock chip, and pulls the data line low. There is no minimum of data bytes that must be sent.

How to Read:

- Send the address D3_(H).
- Send the byte count in binary coded decimal
- Read back the desired number of data bytes

See the diagram below:

Clock Generator Address (7 bits)		Byte		Data Byte		Data Byte
A(6:0) & R/W#	ACK	Count	ACK	1	ACK	N
D3(H)						

The following specifications should be observed:

1. Operating voltage for I²C pins is 3.3V

- Maximum data transfer rate (SCLK) is 100K bits/sec.

ICS9148-47

Serial Bitmap

Byte 3: Functionality & Frequency Select & Spread Slect Register

Bit		Do	escription		PWD
7		(I	Reserved)		0
	Bit 654	CPU	PCI	Spread Percentage	
6:4	000 001 010 011 100 101 110 111	68.5 75.0 83.3 66.6 103 112 133.3 100	34.25 37.5 41.6 33.3 34.3 37.3 44.43 33.33	±0.5% Center ±0.5% Center ±0.5% Center ±0.5% Center ±0.5% Center ±0.5% Center ±0.5% Center ±0.5% Center	0
3	SEL1	uency is se 00/66.6# uency is sel	·	ardware select :4 above	0
2		(I	Reserved)		
10	01 - Tes 10 - Spr	rmal operat t mode ead sprectru state all out	um ON		00

Notes: 1 = Enabled; 0 = Disabled, outputs held low

Byte 5:

Bit	Pin#	Pin Name	PWD	Descr	iption
DIL	PIII#	Pin Name	PWD	Bit Value $= 0$	Bit Value = 1
7	4	PCICLK_F	1	Disabled (low)	Enabled
6	11	PCICLK5	1	Disabled (low)	Enabled
5	10	PCICLK4	1	Disabled (low)	Enabled
4	-	-	0	(Reserved)	(Reserved)
3	8	PCICLK3	1	Disabled (low)	Enabled
2	7	PCICLK2	1	Disabled (low)	Enabled
1	6	PCICLK1	1	Disabled (low)	Enabled
0	5	PCICLK0	1	Disabled (low)	Enabled

Notes: 1 = Enabled; 0 = Disabled, outputs held low

Byte 4:

Bit	Pin#	Pin Name	PWD	Descr	iption
DIL	F 1111#	riii Naiile	FWD	Bit Value = 0	Bit Value = 1
7	-	-	1	(Reserved)	(Reserved)
6	-	-	1	(Reserved)	(Reserved)
5	-	-	1	(Reserved)	(Reserved)
4	-	-	1	(Reserved)	(Reserved)
3	-	-	-	(Reserved)	(Reserved)
2	21	CPUCLK1	1	Disabled (low)	Enabled
1	-	_	0	(Reserved)	(Reserved)
0	22	CPUCLK0	1	(Disabled) (low)	Enabled

Notes: 1 = Enabled; 0 = Disabled, outputs held low

Note: PWD = Power-Up Default

Byte 6:

Bit	Pin#	Pin Name	PWD	Descr	iption
DIL	PIII#	Pin Name	PWD	Bit Value = 0	Bit Value = 1
7	-	-	0	(Reserved)	(Reserved)
6	-	-	0	(Reserved)	(Reserved)
5	24	IOAPIC	1	Disabled (low)	Enabled
4	-	-	0	(Reserved)	(Reserved)
3	-	-	0	(Reserved)	(Reserved)
2	-	-	0	(Reserved)	(Reserved)
1	27	REF0	1	(Disabled) (low)	Enabled
0	27	REF0	1	(Disabled) (low)	Enabled

Notes:

 $1 = \text{Enabled}; \quad 0 = \text{Disabled}, \text{ outputs held low}$

For pin 27, there are 2 output stages together for 1 pin. These 2 latches must be both 0 or 1 simultaneously or there will be a short to ground if one is disabled $\,$ and the other is running.

Absolute Maximum Ratings

Supply Voltage 7.0 V

Logic Inputs GND-0.5 V to V_{DD}+0.5 V

Ambient Operating Temperature 0°C to +70°C

Storage Temperature -65° C to $+150^{\circ}$ C

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input/Supply/Common Output Parameters

 $T_A = 0$ - 70C; Supply Voltage $V_{DD} = V_{DDL} = 3.3 \text{ V} + /-5\%$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Voltage	V_{IH}		2		$V_{DD} + 0.3$	V
Input Low Voltage	$V_{\rm IL}$		V_{SS} -0.3		0.8	V
Input High Current	I_{IH}	$V_{IN} = V_{DD}$		0.1	5	μΑ
Input Low Current	$I_{\rm IL1}$	V _{IN} = 0 V; Inputs with no pull-up resistors	-5	2.0		μΑ
Input Low Current	I_{IL2}	V _{IN} = 0 V; Inputs with pull-up resistors	-200	-100		μΑ
Operating	I _{DD3.3OP66}	C _L = 0 pF; Select @ 66MHz		60	170	mA
Supply Current	I _{DD3.3OP100}	C _L = 0 pF; Select @ 100MHz		66	170	
Power Down	I _{DD3.3PD}	$C_L = 0$ pF; With input address to Vdd or GND)	3	650	μΑ
Supply Current						
Input frequency	F_{i}	$V_{DD} = 3.3 \text{ V};$		14.318		MHz
Input Capacitance ¹	C_{IN}	Logic Inputs			5	pF
	C_{INX}	X1 & X2 pins	27	36	45	pF
Transition Time ¹	T _{trans}	To 1st crossing of target Freq.			3	ms
Settling Time ¹	T_{s}	From 1st crossing to 1% target Freq.		5		ms
Clk Stabilization ¹	T_{STAB}	From $V_{DD} = 3.3 \text{ V}$ to 1% target Freq.			3	ms
Skew ¹	T _{AGP-PCI1}	$V_T = 1.5 \text{ V};$	1	3.5	4	ns

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - Input/Supply/Common Output Parameters

 $T_A = 0 - 70C$; Supply Voltage $V_{DD} = 3.3 \text{ V} + /-5\%$, $V_{DDL} = 2.5 \text{ V} + /-5\%$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating	IDD2.50P66	$C_L = 0 \text{ pF}$; Select @ 66.8 MHz		16	72	mA
Supply Current	I _{DD2.5OP100}	$C_L = 0 \text{ pF}$; Select @ 100 MHz		23	100	mA
Power Down Supply Current	I _{DD2.5PD}	$C_L = 0$ pF; With input address to Vdd or GND		10	100	μΑ
gr 1	tcpu-agp		0	0.5	1	ns
Skew	tcpu-pci2	$V_T = 1.5 \text{ V}; V_{TL} = 1.25 \text{ V}$	1	2.6	4	ns

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - CPUCLK

 $T_A = 0 - 70C$; $V_{DD} = 3.3 \text{ V} + / -5\%$, $V_{DDL} = 2.5 \text{ V} + / -5\%$; $C_L = 20 \text{ pF}$ (unless otherwise stated)

		1 2 1				
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V_{OH2B}	$I_{OH} = -12.0 \text{ mA}$	2	2.3		V
Output Low Voltage	V_{OL2B}	$I_{OL} = 12 \text{ mA}$		0.2	0.4	V
Output High Current	I_{OH2B}	$V_{OH} = 1.7 \text{ V}$		-41	-19	mA
Output Low Current	I_{OL2B}	$V_{OL} = 0.7 \text{ V}$	19	37		mA
Rise Time	t_{r2B}^{1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.0 \text{ V}$		1.25	1.6	ns
Fall Time	t_{f2B}^{1}	$V_{OH} = 2.0 \text{ V}, V_{OL} = 0.4 \text{ V}$		1	1.6	ns
Duty Cycle	d_{t2B}^{1}	$V_{\rm T} = 1.25 \text{ V}$	45	48	55	%
Skew	t_{sk2B}^{1}	$V_T = 1.25 \text{ V}$		30	175	ps
Jitter, Cycle-to-cycle	t _{jcyc-cyc2B} 1	$V_T = 1.25 \text{ V}$		150	250	ps
Jitter, One Sigma	t_{j1s2B}^{1}	$V_T = 1.25 \text{ V}$		40	150	ps
Jitter, Absolute	t _{jabs2B} ¹	$V_T = 1.25 \text{ V}$	-250	140	+250	ps

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - PCICLK

 $T_{A} = 0 \text{ - } 70C; \; V_{DD} = V_{DDL} = 3.3 \; V \text{ +/-5\%} \, ; \; C_{L} = 30 \; pF$

		*				
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V _{OH1}	$I_{OH} = -11 \text{ mA}$	2.4	3.1		V
Output Low Voltage	V _{OL1}	$I_{OL} = 9.4 \text{ mA}$		0.1	0.4	V
Output High Current	Іон1	$V_{OH} = 2.0 \text{ V}$		-62	-22	mA
Output Low Current	I _{OL1}	$V_{OL} = 0.8 \text{ V}$	16	57		mA
Rise Time ¹	t_{r1}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$		1.5	2	ns
Fall Time ¹	tfi	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$		1.1	2	ns
Duty Cycle ¹	d_{t1}	$V_T = 1.5 \text{ V}$	45	50	55	%
Skew ¹	t_{sk1}	$V_T = 1.5 \text{ V}$		140	500	ps
Jitter, One Sigma ¹	tj1s1	$V_T = 1.5 \text{ V}$		17	150	ps
Jitter, Absolute ¹	tjabs1	$V_T = 1.5 \text{ V}$	-500	70	500	ps

¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - IOAPIC

 $T_A = 0 - 70C$; $V_{DD} = 3.3 \text{ V} + /-5\%$, $V_{DDL} = 2.5 \text{ V} + /-5\%$; $C_L = 20 \text{ pF}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V _{OH4B}	$I_{OH} = -18 \text{ mA}$	2	2.2		V
Output Low Voltage	V _{OL4B}	$I_{OL} = 18 \text{ mA}$		0.33	0.4	V
Output High Current	Іон4в	V _{OH} = 1.7 V		-41	-28	mA
Output Low Current	I _{OL4B}	$V_{OL} = 0.7 \text{ V}$	29	37		mA
Rise Time ¹	T_{r4B}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.0 \text{ V}$		1.3	1.6	ns
Fall Time ¹	T_{f4B}	$V_{OH} = 2.0 \text{ V}, V_{OL} = 0.4 \text{ V}$		1.1	1.6	ns
Duty Cycle ¹	D _{t4B}	$V_T = 1.25 \text{ V}$	45	54	55	%
Skew ¹	t_{sk4B}^{1}	$V_T = 1.25 \text{ V}$		60	250	ps
Jitter, One Sigma ¹	Tj1s4B	$V_T = 1.25 \text{ V}$		1	3	%
Jitter, Absolute ¹	Tjabs4B	$V_T = 1.25 \text{ V}$	-5		5	%

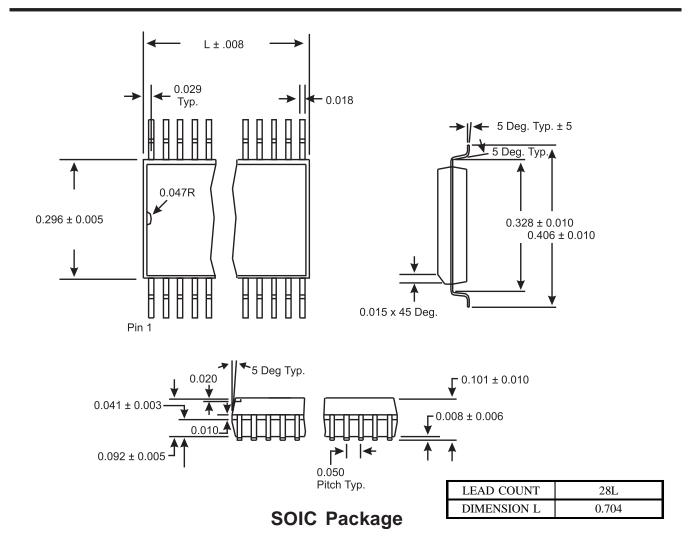
¹Guaranteed by design, not 100% tested in production.

Electrical Characteristics - 48, 24 MHz

 $T_A = 0$ - 70C; $V_{DD} = V_{DDL} = 3.3 \text{ V} + /-5\%$; $C_L = 20 \text{ pF}$ (unless otherwise stated)

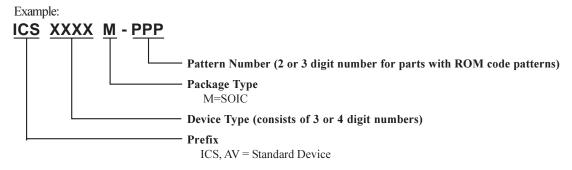
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V _{OH5}	$I_{OH} = -12 \text{ mA}$	2.6	3		V
Output Low Voltage	V _{OL5}	$I_{OL} = 9 \text{ mA}$		0.14	0.4	V
Output High Current	Іон5	V _{OH} = 2.0 V		-44	-22	mA
Output Low Current	I _{OL5}	$V_{OL} = 0.8 \text{ V}$	16	42		mA
Rise Time ¹	t _r 5	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$		1.2	4	ns
Fall Time ¹	t ₅	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$		1.2	4	ns
Duty Cycle ¹	d _{t5}	$V_T = 1.5 \text{ V}$	45	52	55	%
Jitter, One Sigma ¹	tj1s5	$V_T = 1.5 \text{ V}$		1	3	%
Jitter, Absolute ¹	tjabs5	$V_T = 1.5 \text{ V}$		3	5	%

¹Guaranteed by design, not 100% tested in production.


Electrical Characteristics - REF

 $T_A = 0 - 70C$; $V_{DD} = V_{DDL} = 3.3 \text{ V} + /-5\%$; $C_L = 20 \text{ pF}$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V _{OH5}	$I_{OH} = -12 \text{ mA}$	2.6	3.1		V
Output Low Voltage	V _{OL5}	$I_{OL} = 9 \text{ mA}$		0.17	0.4	V
Output High Current	I _{OH5}	$V_{OH} = 2.0 \text{ V}$		-44	-22	mA
Output Low Current	I _{OL5}	$V_{OL} = 0.8 \text{ V}$	29	42		mA
Rise Time ¹	t_{r5}	$V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$		1.4	2	ns
Fall Time ¹	ts	$V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$		1.1	2	ns
Duty Cycle ¹	dt5	$V_{T} = 1.5 \text{ V}$	47	54	57	%
Jitter, One Sigma ¹	t _{j1s5}	$V_T = 1.5 \text{ V}$		1	3	%
Jitter, Absolute ¹	tjabs5	$V_T = 1.5 \text{ V}$		3	5	%


Guaranteed by design, not 100% tested in production.

Ordering Information

ICS9148M-47

