FEATURES

- Low Noise Adaptive-Frequency Current Mode Operation Avoids Low Frequency Noise at Most Load Currents
- Can Be Externally Synchronized (LT1500)
- Micropower Quiescent Current: 200 A
- Shutdown Ourrent: $8 \mu \mathrm{~A}$ Typ
- Internal Loop Compensation
- Low-Battery Comparator Active in Shutdown
- Minimum Input Voltage: 1.8V Typ
- Additional Negative Voltage Feedback Pin (LT1500)
- Up to 500 kHz Switching Frequency
- Uses Low Profile, Low Cost Surface Mount Inductors

APPLICATIO NS

- Portable Instrumentation
- Battery Operated Systems
- PDA's
- Standby Power

DESCRIPTIO n

TheLT ${ }^{\otimes} 1500$ is an adaptive frequency current modestepup switching regulator with an internal power switch that is rated up to 700 mA . In contrast to pulse skipping switching regulators, the LT1500 uses a current mode topology that provides lower noise operation and improved efficiency. Only at very light loads is Burst Mode ${ }^{\text {TM }}$ activated to give high efficiency and micropower operation. High switching frequency (upto 500 kHz) allows very small inductors to be used, along with ceramic capacitors if desired.

The LT1500 operates with input voltages from 1.8 V to 15 V and has only $200 \mu \mathrm{~A}$ operating current dropping to $8 \mu \mathrm{~A}$ in shutdown. A low-battery comparator is included which stays alive in shutdown. A second output feedback pin with negative polarity allows negative output voltages to be regulated when the switcher is connected up as a Ouk or a flyback converter.
Two package types are available. The LT1500 comes in a 14-pin SO package, with two options available for fixed output (3.3V or 5 V) or adjustable operation. A reduced feature part, the LT1501, comes in the smaller 8-pin SO package with internal frequency compensation. It is also available in adjustable and fixed output voltage versions.
$\overline{\mathbf{\Sigma Y}}$, LTC and LT are registered trademarks of Linear Technology Corporation. Burst Mode is a trademark of Linear Technology Corporation.

TYPICAL APPLICATIO n

ABSO LUTE MAXIMUM RATInG S

Supply Voltage 20 V
Switch Voltage (SW) 30 V
Shutdown Voltage (SHDN) 20 V
ISENSE Voltage 20 V
B Voltage 5 V
LBI Voltage 5 V
LBO Voltage 15 V
Operating Ambient Temperature Range Commercial $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Industrial $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Operating Junction Temperature Range Commercial $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Industrial $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAG E/ORDER INFO RMATIO n

Consult factory for Military grade parts.
ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathbb{N}}=2.3 \mathrm{~V}$ unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Feedback/Output Pin Reference Voltage	LT1500/LT1501, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ All Conditions (Note 6)	\bullet	$\begin{aligned} & 1.240 \\ & 1.235 \end{aligned}$	1.265	$\begin{aligned} & 1.290 \\ & 1.295 \end{aligned}$	V
	LT1500-3/5, Select Pin Open All Conditions (Note 6)	\bullet	$\begin{aligned} & 3.230 \\ & 3.200 \end{aligned}$	3.300	$\begin{aligned} & 3.370 \\ & 3.400 \end{aligned}$	V
	LT1500-3/5, Select Pin Grounded All Conditions (Note 6)	\bullet	$\begin{gathered} 4.900 \\ 4.85 \end{gathered}$	5.000	$\begin{gathered} 5.100 \\ 5.15 \end{gathered}$	V
Reference Voltage Line Regulation	$\mathrm{V}_{\text {IN }}=2.3 \mathrm{~V}$ to 15 V	\bullet		0.02	0.06	\%/V
Feedback Pin Bias Current		\bullet		30	100	nA

LT1500/LT1501

ELECTRICAL CHARACTERISTICS $\quad \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathbb{N}}=2.3 \mathrm{v}$ unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Internal Divider Ourrent	LT1500-3.3/LT1501-3.3 LT1500-5/LT1501-5	\bullet		$\begin{aligned} & 22 \\ & 33 \end{aligned}$	$\begin{aligned} & 30 \\ & 45 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Operating Quiescent Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}} \leq 5 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=2.3 \mathrm{~V}(\text { Note } 1) \\ & \mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V} \end{aligned}$	\bullet		200	$\begin{aligned} & 280 \\ & 320 \end{aligned}$	$\overline{\mu \mathrm{A}}$ $\mu \mathrm{A}$
Supply Ourrent in Shutdown	$\begin{aligned} & \mathrm{V}_{\text {SHDN }} \leq 0.2 \mathrm{~V} \text {, Fxed Voltages (Note 7) } \\ & \mathrm{T}_{\mathrm{J}} \geq 0^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{J}}<0^{\circ} \mathrm{C} \end{aligned}$	\bullet		8	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Shutdown Pin Threshold		-	0.4		1.1	V
Shutdown Pin Input Ourrent	$\mathrm{V}_{\text {SHDN }}=2.3 \mathrm{~V}$	\bullet		3	10	$\mu \mathrm{A}$
Input Start-Up Voltage	$\begin{gathered} V_{S H D N}=V_{I N} \\ T_{J} \geq 0^{\circ} \mathrm{C} \\ T_{J}<0^{\circ} \mathrm{C} \end{gathered}$	\bullet		2.0	$\begin{aligned} & 2.1 \\ & 2.2 \end{aligned}$	V
Undervoltage Lockout	Light Load Full Load			$\begin{aligned} & 1.8 \\ & 2.0 \end{aligned}$	2.1	V

Power Switch

Switch On Resistance	$I_{\mathrm{SW}}=0.7 \mathrm{~A}$ (Note2)	\bullet	0.50	0.72	Ω
Peak Switch Ourrent (Note3)		\bullet	0.7	0.85	1.3
Switch Breakdown Voltage	$\mathrm{I}_{\mathrm{SW}}=100 \mu \mathrm{~A}$	\bullet	30	45	A
Switch Leakage Ourrent	$\mathrm{V}_{\mathrm{SW}}=5 \mathrm{~V}$	\bullet	0.2	5	$\mu \mathrm{VA}$
	$\mathrm{V}_{\mathrm{SW}}=20 \mathrm{~V}$	\bullet	0.3	10	$\mu \mathrm{~A}$
Switch Turn-On Delay (Note5)			800	ns	
Switch Turn-Off Delay (Note5)			400	ns	
arrent Sense Resistor		\bullet	0.28	0.42	Ω

Low-Battery Comparator

Low-Battery Threshold	Falling Edge	\bullet	1.20	1.24	1.28	V
Threshold Hysteresis			20		mV	
LBI Input Bias Current		\bullet	20	50	nA	
LBO Cutput Low State	$\mathrm{V}_{\mathrm{LB}}=1.2 \mathrm{~V}, \mathrm{I}_{\mathrm{SINK}}=100 \mu \mathrm{~A}$	\bullet	0.1	0.25	V	
	$\mathrm{I}_{\mathrm{SINK}}=2 \mathrm{~mA}$	\bullet	0.3	0.5	V	
LBOLeakage Ourrent	$\mathrm{V}_{\mathrm{LBI}}=1.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{LBO}} \leq 15 \mathrm{~V}$	\bullet		2	$\mu \mathrm{~A}$	

LT1500 Functions

SYNC Pin Bias Ourrent	$\mathrm{V}_{\text {SYNC }}=3.3 \mathrm{~V}$	\bullet		15	35	$\mu \mathrm{A}$
SYNCPin Threshold		\bullet	0.4		1.3	V
Eror Amplifier Transconductance				600		$\mu \mathrm{mho}$
V_{C} Pin Source Current				20		$\mu \mathrm{A}$
V_{C} Pin High Camp Voltage			1.20	1.26	1.32	V
NFB Reference Voltage	m Pin Open	\bullet	1.230	1.265	1.300	V
NFB Pin Bias Ourrent		\bullet		12	20	$\mu \mathrm{A}$
NB to B Transconductance	Note 4			10,000		$\mu \mathrm{mho}$
Soft Start Bias Current	Ourrent Aows Out of Pin	-	2	4	7	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS

The denotes specifications which apply over the full operating temperature range.
Note 1: Feedback pin or output is held sightly above the regulated value to force the V_{C} node low and switching to stop.
Note 2: See Typical Performance Characteristics for graph of Guaranteed Switch Voltage vs Saturation Voltage.
Note 3: Peak switch current is the guaranteed minimum value of switch current available in normal operation. Highest calculated switch current at full load should not exceed the minimum value shown.
Note 4: Loading on $円$ pin will affect $N ß B$ reference voltage. $\Delta \mathrm{V}_{\mathrm{NB}}=\mathrm{I}_{\circledast} / \mathrm{gm}$. Do not exceed $10 \mu \mathrm{~A}$ loading on B when NB is being used.
Note 5: This is the delay between sense pin current reaching its upper or lower threshold and switch transition. Switch delay times cause peak-to-
peak inductor current to increase and therefore switching frequency to be low. This effect will be significant for frequencies above 100kHz. See Application Information and Typical Performance Characteristics.
Note 6: Reference voltage under all conditions includes $\mathrm{V}_{\mathrm{IN}}=2.1 \mathrm{~V}$ to 15 V , all loads and full temperature range.
Note 7: As with all boost regulators the output voltage of the LT1500 cannot fall to less than input voltage because of the path through the catch diode. This means that the output voltage divider on adjustable parts will still be generating feedback voltage at the 円B pin (fixed voltage parts have an internal switch to disconnect the divider in shutdown). If the voltage on B is greater than 0.6 V in shutdown, the internal error amplifier will draw current that adds to shutdown current. See graph of Shutdown Current vs B voltage in Typical Performance Characteristics.

TYPICAL PERFO RMAnCE CHARACTERISTICS

LTC1500/01 • TPC20

Efficiency (3.3V Output)

LTC1500/01 • TPC17

LTC1500/01 • TPC21

Efficiency (5V Output)

LTC1500010 • TPC18

Switching Frequency (12V Output)

LTC1500/01 • TPC22

TYPICAL PERFO RMAnCE CHARACTERISTICS

LT1500/01•TPC11

Inductor Copper Loss

(3.3V Output)

LT1500/01 •TPC14

Maximum Load Current

(3.3V Output)

LT1500/01 • TPCO8

LT1500/01•TPC12

Inductor Copper Loss (5V Output)

LT1500/01•TPC15

Maximum Load Current (5V Output)

LT1500/01 • TPC09

LT1500/01 • TPC13
Inductor Copper Loss (12V Output)

LTC1500/01 • TPC16
Maximum Load Current (12V Output)

TYPICAL PERFO RMAOCE CHARACTERISTICS

PIn FUNCTIO NS

$\overline{\text { SHDN: Logic Level Shutdown Pin. This pin must be held }}$ high (>1.1V) for the regulator to run. $\overline{\mathrm{SHDN}}$ can be tied directly to $\mathrm{V}_{\mathbb{I N}}$, even with $\mathrm{V}_{\mathbb{I N}}=18 \mathrm{~V}$. The low-battery detector remains activein shutdown, but all other circuitry is turned off.
V_{IN} : This pin supplies power to the regulator and is connected to one side of the inductor sense resistor. It should be bypassed close to the chip with a low ESR capacitor.
$I_{\text {SENSE: }}$ This is one end of the internal inductor-current sense resistor. With most applications, only the external inductor is tied to this pin.

GND: This pin carries only low level current in theLT1500, but it carries full switch current in the LT1501. The negative end of the input bypass capacitor should be connected close to this pin and the pin should go directly to the ground plane with the LT1501.

PGND (LT1500 Only): This pin is theemitter of theinternal NPNpower switch. Connect it directly to theground plane.
SW: This is thecollector of theinternal NPNpower switch. To avoid EMl and overvoltage spikes, keep connections to this pin very short.

LBI: This is the input to the low-battery detector with a threshold of 1.24 V . Maximum pin voltage is 5 V . Bypass LBI with a small filter capacitor when used. If unused, tie LBI to ground. The low-battery detector remains active in shutdown.

LBO : This is the open collector output of the low-battery detector. It will sink up to 2 mA . Leave open if not used.
FB/V OUT: $_{\text {: }}$ 円istheinverting input totheerror amplifier with a regulating point of 1.265 V and a typical bias current of 30nA. Bias current is reduced with a canceling circuit, so bias current could flow in either direction. \nrightarrow is replaced with V_{Or} on fixed voltage parts. $\mathrm{V}_{0 \text { or }}$ is the top of an internal divider that is connected to the internal $\not B$ node. A switch disconnects the divider in shutdown so that the divider current does not load $\mathrm{V}_{\mathbb{I N}}$ through the inductor and catch diode.

NFB/SELECT (LT1500 Only): NB is a second feedback node used to regulate a negative output voltage. Negative output voltages can be generated by using a transformer flyback circuit, aOukconverter or acapacitor chargepump added to a boost converter. The regulating point for NFB is 1.265 V and the internal resistance to ground is $100 \mathrm{k} \Omega$. External divider current should be $300 \mu \mathrm{~A}$ or greater to avoidnegativeoutput voltagevariations dueto production variations in the internal resistor value. 円 should be left open when using NFB.
On fixed voltage parts, NFB is replaced with Select. The Select pinis used to set output voltageat either 3.3V or 5V.
V_{C} (LT1500 Only): This is theoutput of theerror amplifier and theinput tothecurrent comparator. The V_{C} pin voltage is about 700 mV at very light loads and about 1.2 V at full load. An internal comparator detects when the V_{C} voltage drops below about 750 mV and shuts down the current comparator and thepower switch biasing to reducequiescent current. This forces the regulator to operate in Burst Mode operation.

SYNC (LT1500 Only): This is a logic level input used to synchronize switching frequency to an external clock. The sync signal overrides the internal current comparator and turns theswitch on. Minimum sync pulsewidth should be 50ns and maximum width should be300ns. Acontinuous high sync signal will force the power switch to stay on indefinitely and current will increase without limit. Don't do this!

SS (LT1500 Only): This is the soft start function using the baseof aPNPtransistor whoseemitter istied tothe $\mathrm{V}_{\mathrm{C}} \mathrm{pin}$. Grounding SS will turn off switching by pulling V_{C} low. A capacitor tied from SS to ground will force V_{C} to ramp up slowly during start-up at a rate set by the capacitor value and the internal $4 \mu \mathrm{~A}$ pull-up current. An external resistor must be used to reset the capacitor voltage completely to OV at power down.

LT1500/LT1501

BLO CK DIAG RAM

APPLICATIO NS INFO RMATIO n

OPERATION (SEE BLOCK DIAGRAM)

TheLT1500 uses a current mode architecturewithout the need for an internal oscillator. Switching frequency is determined by the value of theexternal inductor used. This technique allows the selection of an operating frequency best suitedto each application and considerably simplifies the internal circuitry needed. It also eliminates a subharmonic oscillation problem common to all fixed frequency (clocked) current mode switchers. In addition, it allows for high efficiency micropower operation while maintaining higher operating frequencies. Because the power switch (Q1) is grounded, the basic topology used
will normally be a boost converter with output voltage always higher than the input voltage. Special topologies such as the SPIC, flyback and Okk converter can also be used when the output voltage may not always be higher than the input or when full shutdown of the output voltage is needed. Operation as a boost converter is as follows.
Assumethat inductor current is continuous, meaning that it never drops to zero. When the switch is on, inductor current will increase with voltage across the inductor equal to $\mathrm{V}_{\mathbb{I}}$. When the switch is off inductor current will decrease with inductor voltage equal to $V_{\text {OUT }}-V_{I N}$. Switching frequency will be determined by the inductor

APPLICATIO NS INFO RMATIO

value, the peak-to-peak inductor current (set internally) and the values for $\mathrm{V}_{\text {IN }}$ and V_{Or}. The LT1500 controls output voltagein continuous mode by adjusting the average value of inductor current while maintaining the peak-to-peak value of the current relatively constant, hence, the name "current mode architecture."
The LT1500 sets the peak-to-peak value of switch current internally to establish operating frequency. This peak-topeak value is scaled down somewhat at light load currents to avoid as long as possible the characteristic of other micropower converters wherein their switching frequency drops very low (into the audio range) at less than full load currents. At extremely light loads, even theLT1500 can no longer maintain higher frequency operation, and utilizes a Burst Mode operation to control output voltage.

Details of Continuous Mode Operation

At the start of a switch cycle, inductor current has decreased to the point where the voltage across $R_{\text {SENSE }}$ is less than the internally generated voltage across Rh. This causes the current comparator output to go high and turn on the switch. At the same time, extra current is added to Rh via S1 to create hysteresis in the trip point of the comparator. This extra current is composed of a fixed amount (I1), and an amount proportional to average inductor current (I2). The presence of a variable I2 increases switching frequency at lighter loads to extend the load current range where high frequency operation is maintained and no Burst Mode operation exists.
With the switch turned on, inductor current will increase until the voltage drop across $\mathrm{R}_{\text {SensE }}$ is equal to the higher voltage across Rh. Then the comparator output will go low, the switch will turn off and thecurrent through Rh will be switched back to its lower value. Inductor current will decrease until the original condition is reached, completing one switch cycle.
Control of output voltage is maintained by adjusting the continuous current flowing through Rh. This affects both upper and lower inductor current trip levels at the same time. Continuous Rh current is controlled by the error amplifier which is comparing the voltage on the Feedback pin to the internal 1.265 V reference. An internal frequency
compensation capacitor filters out most the ripple voltage at the amplifier output.

Operation at Light Loads

At light load currents the lower trip level (switch turn-on) for inductor current drops below zero. At first glance, this would seem to initiate a permanent switch off-state because the inductor current cannot reverse in a boost topology. In fact, what happens is that output voltage drops slightly between switch cycles, causing the error amplifier output to increaseand bring thecurrent triplevel back up to zero. The switch then turns back on and inductor current increases to a value set by I1 (I2 is near zero at this point). The switch then turns off, and the inductor energy is delivered to theoutput, causing it to rise backupslightly. Oneor moreswitch cycles may beneeded to raise the output voltage high enough that the amplifier output drops enough to force a sustained switch off period. The output voltage then slowly drops back low enough to cause the amplifier output to rise high enough to initiate a switch turn-on. Switching operation now consists of a series of bursts where the switch runs at normal frequency for oneor morecycles, thenturns off for a number of cycles. This Burst Mode operation is what allows the LT1500 to havemicropower operation and high efficiency at very light loads.

Saving Current in Burst Mode Operation

Internal current drain for the LT1500 control circuitry is about $400 \mu \mathrm{~A}$ when everything is operating. To achieve higher efficiency at extremely light loads, a special operating mode is initiated when the error amplifier output is toward the low end of its range. The adaptive bias circuit comparator detectsthat theerror amplifier output is below apredetermined level and turns off thecurrent comparator and switch driver biasing. This reduces current drain to about $200 \mu \mathrm{~A}$, and forces a switch off state. Hysteresis in the comparator forces the device to remain in this micropower modeuntil theerror amplifier output rises up beyond the original trip point. The regulated output voltage will fall slightly over a relatively long period of time (remember that load current is very low) until the error amplifier output rises enough to turn off the adaptive bias

APPLICATIO NS INFO RMATIO n

mode. Normal operation resumes for one or more switch cycles and the output voltage increases until the error amplifier output falls below threshold, initiating a new adaptive bias shutdown.

DESIGN GUIDE

Selecting Inductor Value

Inductor value is chosen as a compromise between size, switching frequency, efficiency and maximum output current. Larger inductor values become physically larger but provide higher output current and give better efficiency (because of the lower switching frequency). Low inductance minimizes size but may limit output current and the higher switching frequency reduces efficiency.
The simplest way to handlethesetrade-offs is to study the graphs in the Typical Performance Characteristics section. Afew minutes with thesegraphs will clearly show the trade-offs and avaluecan bequickly chosenthat meets the requirements of frequency, efficiency and output current. This leaves only physical size as the final consideration. Theconcernhereis that for agiven inductor value, smaller size usually means higher series resistance. The graphs showing efficiency loss vs inductor series resistance will allow a quick estimate of the additional losses associated with very small inductors.
One final consideration is inductor construction. Many small inductors are "open frame ferrites" such as rods or barrels. These geometries do not have a closed magnetic path, so they radiatesignificant Bfields inthevicinity of the inductor. This can affect surrounding circuitry that is sensitive to magnetic fields. Closed geometries such as toroids or E-cores havevery low stray Bfields, but they are larger and more expensive (naturally).

Catch Diode

The catch diode in a boost converter has an average current equal to output current, but the peak current can besignificantly higher. Maximum reverse voltage is equal to output voltage. A 0.5A Schottky diode like MBR0520L works well in nearly all applications.

Input Capacitor

Input capacitors for boost regulators are less critical than the output capacitor because the input capacitor ripple current is a simple triwave without the higher frequency harmonics found in theoutput capacitor current. Peak-topeak current is less than 200 mA and worst-case RMS ripple current in the input capacitor is less than 70 mA .
Input capacitor series resistance (ESR) should be low enough to keep input ripple voltage to less than $100 \mathrm{mV} \mathrm{V}_{\text {P-p }}$. This assumes that the capacitor is an aluminum or tantalum type where the capacitor reactance at the switching frequency is small compared to the ESR.

$$
\mathrm{C} \geq \frac{2}{\pi(\mathrm{f})(\mathrm{ESR})}
$$

Atypical input capacitor is a $33 \mu \mathrm{~F}, 6 \mathrm{~V}$ surface mount solid tantalum type TPS from AVX. It is a " C ' case size, with 0.15Ω maximum ESR. Some caution must be used with solid tantalum input capacitors because they can be damaged with turn-on surge currents that occur when a low impedance power source is hot-switched to the input of theregulator. This problem is mitigated by using a capacitor with a voltage rating at least twicethehighest expected input voltage. Consult withthemanufacturer for additional guidelines.
If a ceramic input capacitor is used, different design criteriaare used because thesecapacitors haveextremely low ESR and are chosen for a minimum number of microfarads.

$$
C(\text { Ceramic })=\frac{1}{4 f}
$$

$f=$ switching frequency
A typical unit is an AVX or Tokin 3.3μ For $4.7 \mu \mathrm{~F}$.

Output Capacitor

Output ripple voltage is determined by the impedance of the output capacitor at the switching frequency. Solid tantalum capacitors rated for switching applications are recommended. These capacitors are essentially resistive at frequencies above 50 kHz , so ESR is theimportant factor in determining ripplevoltage. Atypical unit is a $220 \mu \mathrm{~F}, 10 \mathrm{~V}$

APPLICATIO NS INFO RMATIO

type TPS from AVX, or type 595D from Sprague. These have an ESR of 0.06Ω in a "E" case size. At lower output current levels, a $100 \mu \mathrm{~F}$ unit in a "D" case size may be sufficient. Output ripple voltage can be calculated from:

$$
V_{\text {RIPPLE }}=\operatorname{ESR}\left[0.1+\frac{1.2(\mathrm{lour})\left(\mathrm{V}_{\mathrm{OU}}\right)}{\mathrm{V}_{\mathrm{N}}}\right]
$$

Loop frequency stability is affected by the characteristics of theoutput capacitor. TheESR of the capacitor should be very low, and the capacitance must be large (> 200 μ F) to ensuregood loop stability under worst-caseconditions of low input voltage, higher output voltages, and high load currents. The 14-pin LT1500 can use external frequency compensation onthe V_{C} pinto givegood loopstability with smaller output capacitors. See Loop Stability section for details.

Precautions regarding solid tantalum capacitors for input bypassing do not apply to the output capacitor because turn-on surges are limited by the inductor and discharge surges do not harm the capacitors.

Setting Output Voltage

Preset 3.3V and 5V parts are available. For other voltage applications the adjustable part uses an external resistor divider to set output voltage. Bias current for thefeedback (円) pin is typically $\pm 30 \mathrm{nA}$ (it is internally compensated). Thevenin divider resistance should be $100 \mathrm{k} \Omega$ or less to keep bias current errors to a minimum. This leads to a value for R1 and R2 (see Fgure 1) of:

$$
\begin{aligned}
& \mathrm{R} 1=\frac{100 \mathrm{k} \Omega\left(\mathrm{~V}_{\mathrm{OUT}}\right)}{1.265 \mathrm{~V}} \\
& \mathrm{R} 2=\frac{\mathrm{R}(1.265)}{\mathrm{V}_{\text {OU }}-1.265}
\end{aligned}
$$

Example: $\mathrm{V}_{\mathrm{OU}}=x \mathrm{xV}$

$$
\mathrm{R} 1=\frac{100 \mathrm{k} \Omega(12)}{1.265}=949 \mathrm{k} \text { (use } 1 \mathrm{M} \text {) }
$$

$$
\mathrm{R} 2=\frac{1 \mathrm{M}(1.265)}{12-1.265}=118 \mathrm{k}
$$

Note that there is an internal switch that disconnects the internal divider for fixed 3.3V and 5V parts in shutdown. This prevents the divider from adding to shutdown current. Without this switch, shutdown current increases because of the divider current directly, but even more so if the $\not B$ pin is held above 0.6 V by the divider. Seegraphs in Typical Performance Characteristics.

Figure 1. External Voltage Divider

Selectable Output (Fixed Voltage Parts)

The Select pin (available only on LT1500-3/5) allows the user to select either a 3.3 V or 5 V output. Foating the pin sets output voltage at 3.3 V and grounding the pin sets output voltage at 5 V . The equivalent circuit of the Select pin function is shown in Figure 2.

Figure 2. Schematic of Select Pin Function
Notethat there is aswitch in series with the $\mathrm{V}_{\text {OU }}$ pin. This switch is turned off in shutdown to eliminate shutdown current drawn by the voltage divider. For adjustable parts

LT1500/LT1501

APPLICATIO NS INFO RMATIO

with an external divider no switch exists and the divider current remains. There may be additional current drawn by the adjustable LT1500 in shutdown if the divider voltage at the feedback node exceeds 0.6 V . See Typical Performance Characteristics.

Loop Stability

The LT1501 is internally compensated since the device has no spare pin for a compensation point. The LT1500 brings out the V_{C} pin to which an external series R_{C} network is connected. This provides roll-off for the error amplifier, ensuring overall loop stability. Typical values when using tantalum output capacitors are 1000pF and $100 \mathrm{k} \Omega$.

Transient response of Fgure 3's circuit with a 30mA to 100 mA load step is detailed in Figure 4. The maximum output disturbanceis approximately 20 mV . The"splitting" of the $\mathrm{V}_{\text {or }}$ tracewhen load current increases to 100 mA is due to ESR of Cour. Cour can be replaced by a ceramic unit, which has lower ESR, size and cost. Fgure 5 shows transient responseto the same 30 mA to 100 mAload step, with $\mathrm{C}_{0 \sim}=15 \mu$ Fceramic, $\mathrm{C}_{\mathrm{C}}=2200 \mathrm{pF}$ and $\mathrm{R}_{\mathrm{C}}=10 \mathrm{k}$. The maximum output disturbance in this case is 100 mV .

CRAMIC = TOKIN 1E156ZY5U

Figure 3. LT1500 2V to 5V Converter

Low-Battery Detector

The low-battery detector is a combined reference and comparator. It has athreshold of 1.24 V with atypical input bias current of 20 nA . In a typical application a resistor divider is connected across the battery input voltage with the center tap tied to Low Battery Input (LBI), se Figure 6. The suggested parallel resistance of the divider is 150 k

Figure 4. Transient Response of LT1500 with $\mathrm{R}_{\mathrm{C}}=100 \mathrm{k}$, $C_{C}=1000 \mathrm{pF}$ and $\mathrm{C}_{\text {OUT }}=220 \mu \mathrm{~F}$. $\mathrm{V}_{\text {OUT }}$ Disturbance is 20 mV

Figure 5. Transient Response of LT 1500 with $\mathrm{R}_{\mathrm{C}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{C}}=$ 2200 pF and $\mathrm{C}_{\text {OUT }}=15 \mu \mathrm{~F}$ Ceramic. $\mathrm{V}_{\text {OUT }}$ Disturbance is 100 mV

Figure 6. Low Battery Detection

APPLICATIO NS INFO RMATIO n

and it should be no more than 300k to keep bias current errors under 1%, giving:

$$
\begin{aligned}
& \mathrm{R} 3=\frac{\mathrm{R}_{\mathrm{DIV}}\left(\mathrm{~V}_{\mathrm{BAT}}\right)}{1.24 \mathrm{~V}} \\
& \mathrm{R} 4=\frac{\mathrm{R} 3(1.24)}{\mathrm{V}_{\mathrm{BAT}}-1.24}
\end{aligned}
$$

$\mathrm{V}_{\mathrm{BAT}}=$ low battery voltage
RDIV $=$ Thevenin divider resistance $=$ R3 in parallel with R4
There is about 20 mV of hysteresis at the LBl pin. Hysteresis can be increased by adding a resistor (R5) from the output (LBO) back to LBI. This resistor can be calculated from thefollowing equation, but notethat theequation for R4 will have to be changed when R5 is added.
$R 5=\frac{R 3\left(V_{O C}\right)}{\left(V_{\text {HYST }}\right)-17 \mathrm{mV}\left(V_{B A T}\right)}$
$V_{\propto C}=$ supply voltage for LBO pull-up resistor
$\mathrm{V}_{\text {HYST }}=$ desired hysteresis at the battery

$$
\begin{aligned}
& \mathrm{R} 4(\text { When } \mathrm{R} 5 \text { is Used })= \\
& \frac{\mathrm{R} 3(\mathrm{R5})(1.24)}{\mathrm{R} 5\left(\mathrm{~V}_{\mathrm{BAT}}-1.24\right)+\mathrm{R} 3\left(\mathrm{~V}_{\mathrm{OC}}-1.24\right)}
\end{aligned}
$$

TheLBOpinis open collector. Theexternal pull-up resistor value is determined by user needs. Generally the resistor is 100 k to 1 M to keep current drain low, but the LBOpin can sink several milliamperes if needed.

Example: low battery voltage $=2.5 \mathrm{~V}$, desired hysteresis $=$ $200 \mathrm{mV}, \mathrm{V}_{\propto}=5 \mathrm{~V}$.
Use R DIV $=150 \mathrm{k}$

$$
\begin{aligned}
& \left.R 3=\frac{150 k(2.5)}{1.24}=302 k \text { (use } 301 \mathrm{k}, 1 \%\right) \\
& \left.R 5=\frac{301 \mathrm{k}(5 \mathrm{~V})}{(0.2)-0.017(2.5)}=9.56 \mathrm{M} \text { (Use } 10 \mathrm{M}\right)
\end{aligned}
$$

$$
\begin{aligned}
R 4 & =\frac{(301 \mathrm{k})(10 \mathrm{M})(1.24)}{10 \mathrm{M}(2.5-1.24)+301 \mathrm{k}(5-1.24)} \\
& =272 \mathrm{k}(\text { Use } 274 \mathrm{k} 1 \%)
\end{aligned}
$$

Thetotal divider resistancewill be274k+301k=575k, and this will draw about $7 \mu \mathrm{~A}$ from a fully charged battery.

Synchronizing

The SYNCpin on the LT1500 can be used to synchronize switching frequency to an external clock. The pin should bedriven with a50ns to 300 ns pulsewhich will trigger the switch to an on state. There is afairly restricted rangeover which synchronizing will work, becausetheperiod between sync pulses must be greater than the natural on-time of the regulator when it is running unsynchronized, and the sync frequency must be greater than the unsynchronized switching frequency. This puts the following restrictions on synchronized operation:
$f_{\text {SYNC }}>f_{\text {NATURAL }}$

$$
f_{\text {STNC }}<\frac{f_{\text {NATURAL }}\left(V_{\text {OUT }}\right)}{V_{\text {OUT }}-V_{\text {IN }}}\left(\text { Use Minimum } V_{\text {N }}\right)
$$

$f_{\text {NATURAL }}$ is the natural unsynchronized switching frequency of the regulator. It is afunction of load current, so a careful check must be done to ensure that the above conditions are met under all load and input voltage conditions.

Soft Start (SS)

The LT1500 can be soft started by connecting a capacitor to the SS pin. This pin is the base of a PNP transistor whose emitter is tied to the V_{C} pin. Soft start action will occur over the range of 0 V to 0.8 V on the SS pin and the pin is clamped at 1.2 V with an internal clamp. An internal $4 \mu \mathrm{~A}$ pull-up current and the external capacitor value determine soft start time. In atypical application a0.22 $\mu \mathrm{F}$ capacitor is sufficient to limit input surges and prevent output overshoot, even with overcompensation on the V_{C} pin. Output voltages greater than 6 V with very largeoutput

LT1500/LT1501

APPLICATIO NS INFO RMATIO

capacitors may require the capacitor to be larger. To ensure proper reset of the soft start capacitor, an external resistor must be connected in parallel with the capacitor. The resistor value should be 470 k or more.

Calculating Temperature Rise

For most applications, temperature rise in the IC will be fairly low and will not be a problem. However, if load currents are near the maximum allowed and ambient temperatures are also high, a calculation should be done to ensure that the maximum junction temperature of $100^{\circ} \mathrm{C}$ is not exceeded. The calculations must account for power dissipation in the switch, thedrivecircuitry and the sense resistor.

$$
\begin{aligned}
& \mathrm{P}_{\text {TOTAL }}=\frac{\left(\mathrm{l}_{\text {OUT }}\right)^{2}\left(\mathrm{R}_{\mathrm{SW}}\right)\left(\mathrm{V}_{\text {OU }}\right)\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {IN }}\right)}{\left(\mathrm{V}_{\mathrm{N}}\right)^{2}} \\
& +\frac{l_{\text {ar }}\left(V_{\text {OUT }}-V_{\text {IN }}\right)}{30}+\frac{R_{\text {SENSE }}\left(l_{\text {our }} \cdot V_{\text {OUT }}\right)^{2}}{\left(V_{\text {IN }}\right)^{2}}
\end{aligned}
$$

$\mathrm{P}_{\text {TOTAL }}=$ total device power dissipation
$\mathrm{R}_{\mathrm{SW}}=$ switch resistance (0.72Ω max)
$R_{\text {SEVSE }}=$ sense resistance (0.42Ω max)
With $\mathrm{V}_{\mathrm{IN}}=-2.2 \mathrm{~V}, \mathrm{~V}_{\text {our }}=5 \mathrm{~V}, \mathrm{I}_{\text {ar }}=150 \mathrm{~mA}$, an 8 -pin SO package and maximum ambient temperature of $85^{\circ} \mathrm{C}$ (industrial range),

$$
\begin{aligned}
\mathrm{P}_{\text {TOTAL }} & =\frac{(0.15)^{2}(0.72)(5)(5-2.2)}{(2.2)^{2}}+\frac{0.15(5-2.2)}{30} \\
& +\frac{0.42(0.15 \cdot 5)^{2}}{(2.2)^{2}} \\
& =0.47+0.014+0.049=0.11 \mathrm{~W}
\end{aligned}
$$

The SOpackage has athermal resistance of $120^{\circ} \mathrm{C} W$, so maximum device temperature will be:

$$
\mathrm{T}_{\mathrm{JMAX}}=85^{\circ} \mathrm{C}+0.11 \mathrm{~W}\left(120^{\circ} \mathrm{CW}\right)=98^{\circ} \mathrm{C}
$$

PACKAG E DESCRIPTIO n

Dimensions in inches (millimeters) unless otherwise noted.

S8 Package
8-Lead Plastic Small Outline (Narrow 0.150)
(LTCDWG\# 05-08-1610)

* DIMENSION DOES NOT INQUUDE MOLD FLASH. MOLD FLASH

SHALL NOT EXC $\# 0.006$ " (0.152 mm) PBR SIDE
** DIMENSION DOES NOT INQUUDE INIIRLEAD RASH. INIERLEAD FLASH SHALL NOT EXC ${ }^{(1)} 0.010 "(0.254 \mathrm{~mm})$ PR SIDE

PACKAG E DESCRIPTIO \cap Dimensions in inches (millimeters) unless otherwise noted.

S Package
14-Lead Plastic Small Outline (Narrow 0.150)
(LTCDWG\# 05-08-1610)

LT1500/LT1501

TYPICAL APPLICATIO n

Typical LT1500 (14-Pin) Application, 2-Cell to 5V Converter

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC 1163	Triple High Side Driver for 2-Cell Inputs	1.8V Minimum Input, Drives N-Channel MOSFETs
LTC1174	Micropower Step-Down DC/DC Converter	94% Efficiency, $130 \mu \mathrm{Al} \mathrm{I}^{2}, 9 \mathrm{~V}$ to 5 V at 300 mA
LT1302	High Output Ourrent Micropower DC/DC Converter	$5 \mathrm{~V} / 600 \mathrm{~mA}$ from $2 \mathrm{~V}, 2 \mathrm{~A}$ Internal Switch, $200 \mu \mathrm{Al} \mathrm{I}_{\mathrm{Q}}$
LT1304	2-Cell Micropower DCDCConverter	Low-Battery Detector Active in Shutdown
LTC1440/1/2	Ultralow Power Single/Dual Comparator with Reference	$2.84 \mathrm{I}_{\mathrm{Q}}$ Adjustable Hysteresis
LTC1516	2-Cell to 5V Regulated Charge Pump	$12 \mu \mathrm{Al} \mathrm{O}_{\mathrm{Q}}$ No Inductors, 5 V at 50 mA from 3V Input
LT1521	Micropower Low Dropout Linear Regulator	500 mV Dropout, $300 \mathrm{~mA} \mathrm{Ourrent} ,12 \mu \mathrm{Al} \mathrm{I}^{\text {a }}$

