
Silicon Controlled Rectifiers Reverse Blocking Thyristors

... designed primarily for half-wave ac control applications, such as motor controls, heating controls and power supply crowbar circuits.

- Glass Passivated Junctions with Center Gate Fire for Greater Parameter Uniformity
 and Stability
- Small, Rugged, Thermowatt Constructed for Low Thermal Resistance, High Heat Dissipation and Durability
- Blocking Voltage to 800 Volts
- 300 A Surge Current Capability
- Insulated Package Simplifies Mounting

ISOLATED SCRs 25 AMPERES RMS 50 thru 800 VOLTS

MCR225FP Series

CASE 221C-02 STYLE 2

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted.)

Rating	Symbol	Value	Unit
Peak Repetitive Forward and Reverse Blocking Voltage ⁽¹⁾ (T _J = -40 to +125°C, Gate Open) MCR225-2FP MCR225-4FP MCR225-6FP MCR225-8FP MCR225-10FP	VDRM VRRM	50 200 400 600 800	Volts
On-State RMS Current (T _C = +70°C) Full Cycle Sine Wave 50 to 60 Hz ⁽²⁾	lT(RMS)	25	Amps
Peak Non-repetitive Surge Current (One Full Cycle, 60 Hz, T _C = +70°C) Preceded and followed by rated current	ITSM	300	Amps
Circuit Fusing (t = 8.3 ms)	l ² t	375	A ² s
Peak Gate Power (T _C = +70°C, Pulse Width = 10 μ s)	PGM	20	Watts
Average Gate Power (T _C = +70°C, t = 8.3 ms)	PG(AV)	0.5	Watt
Peak Gate Current (T _C = +70°C, Pulse Width = 10 μ s)	IGM	2	Amps
RMS Isolation Voltage (T _A = 25°C, Relative Humidity \leq 20%)	V _(ISO)	1500	Volts
Operating Junction Temperature Range	TJ	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +125	°C

1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

2. The case temperature reference point for all T_C measurements is a point on the center lead of the package as close as possible to the plastic body.

MCR225FP Series

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _{θJC}	1.5	°C/W
Thermal Resistance, Case to Sink	R _{0CS}	2.2 (typ)	°C/W
Thermal Resistance, Junction to Ambient	R _{0JA}	60	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Peak Forward Blocking Current $(V_D = Rated V_{DRM}, Gate Open)$ $T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$	IDRM			10 2	μA mA
Peak Reverse Blocking Current $(V_R = Rated V_{RRM})$ $T_J = 125^{\circ}C$	IRRM	—	_	2	mA
Forward "On" Voltage ⁽¹⁾ (I _{TM} = 50 A)	VTM	-	-	1.8	Volts
Gate Trigger Current (Continuous dc) (Anode Voltage = 12 Vdc, R _L = 100 Ohms)	lgt	—	-	40	mA
Gate Trigger Voltage (Continuous dc) (Anode Voltage = 12 Vdc, R _L = 100 Ohms)	VGT	—	0.8	1.5	Volts
Gate Non-Trigger Voltage (Anode Voltage = Rated V _{DRM} , R _L = 100 Ohms, T _J = 125°C)	V _{GD}	0.2	-	—	Volts
Holding Current (Anode Voltage = 12 Vdc)	ΙΗ	—	20	40	mA
Turn-On Time (I _{TM} = 25 A, I _{GT} = 40 mAdc)	tgt	—	1.5	—	μs
Turn-Off Time (V _{DRM} = Rated Voltage) (I_{TM} = 25 A, I_R = 25 A) (I_{TM} = 25 A, I_R = 25 A, T_J = 125°C)	tq	_	15 35	_	μs
Critical Rate-of-Rise of Off-State Voltage (Gate Open, V _D = Rated V _{DRM} , Exponential Waveform)	dv/dt	—	100	—	V/µs

1. Pulse Test: Pulse Width = 1 ms, Duty Cycle \leq 2%.

TYPICAL CHARACTERISTICS

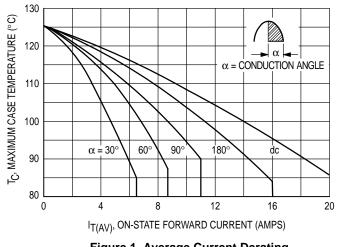
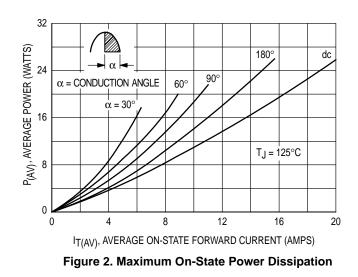



Figure 1. Average Current Derating

MCR225FP Series

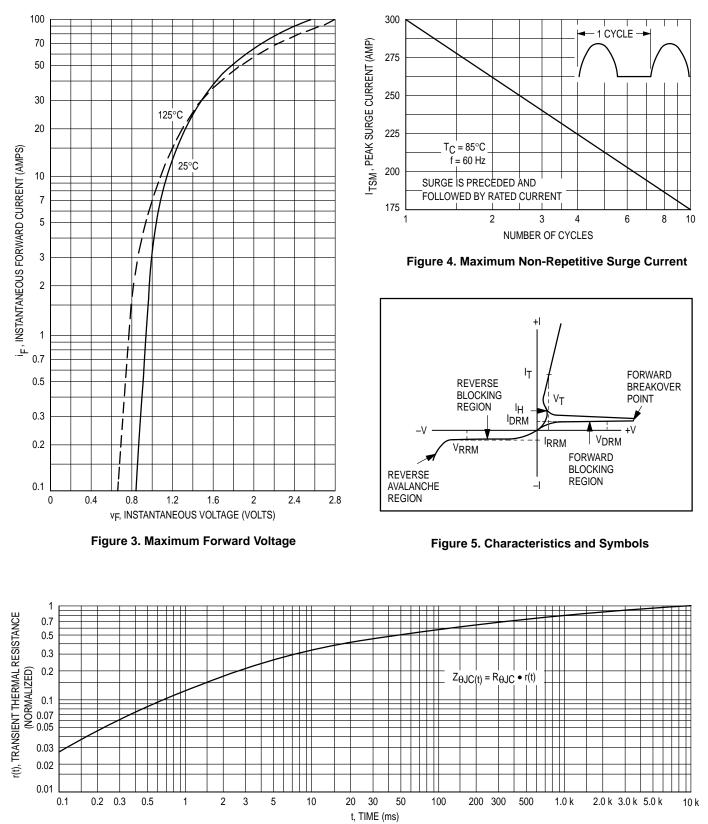


Figure 6. Thermal Response

MCR225FP Series

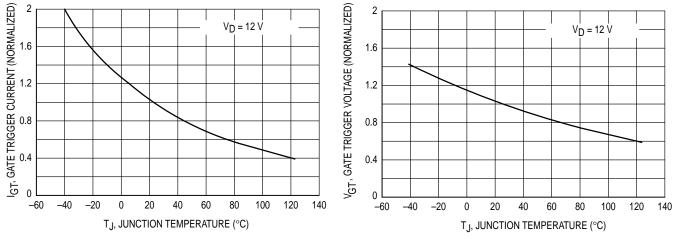


Figure 8. Gate Trigger Voltage versus Temperature

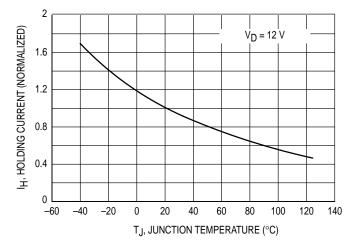
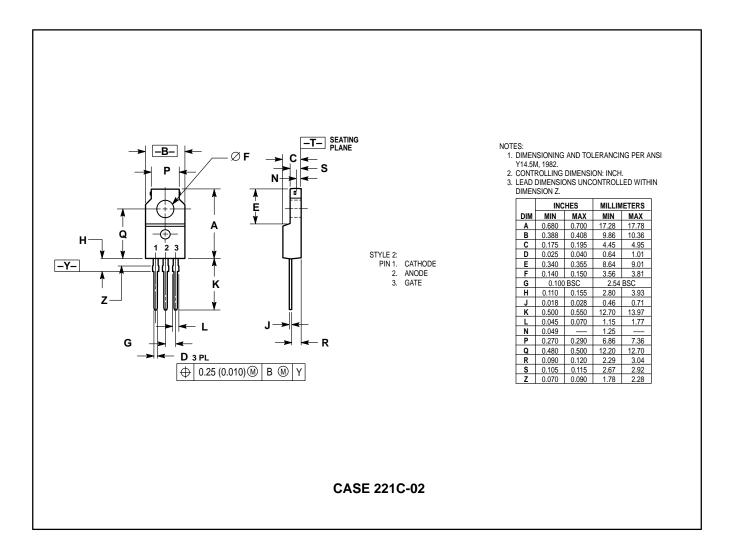



Figure 9. Holding Current versus Temperature

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and **if** are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

 \Diamond