NTR4502P, NVTR4502P

Power MOSFET

TY Semicondutor[®]

-30 V, -1.95 A, Single, P-Channel, SOT-23

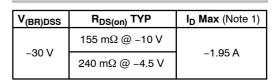
Features

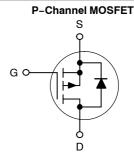
- Leading Planar Technology for Low Gate Charge / Fast Switching
- Low R_{DS(ON)} for Low Conduction Losses
- SOT-23 Surface Mount for Small Footprint (3 X 3 mm)
- AEC Q101 Qualified NVTR4502P
- These Devices are Pb-Free and are RoHS Compliant

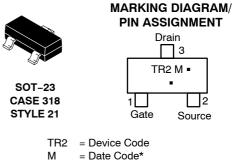
Applications

- DC to DC Conversion
- Load/Power Switch for Portables and Computing
- Motherboard, Notebooks, Camcorders, Digital Camera's, etc.
- Battery Charging Circuits

MAXIMUM RATINGS (T_J = $25^{\circ}C$ unless otherwise stated)


Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	-30	V
Gate-to-Source Voltage			V _{GS}	±20	V
Drain Current (Note 1)	t < 10 s	$T_A = 25^{\circ}C$	I _D	-1.95	А
		$T_A = 70^{\circ}C$		-1.56	
Power Dissipation (Note 1)	t < 10 s		PD	1.25	W
Continuous Drain Current (Note 1)	Steady State	$T_A = 25^{\circ}C$	I _D	-1.13	А
		$T_A = 70^{\circ}C$		-0.90	
Power Dissipation (Note 1)	Steady State		P _D	0.4	W
Pulsed Drain Current	t _p =	10 μs	I _{DM}	-6.8	А
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C
Source Current (Body Diode)			I _S	-1.25	А
Lead Temperature for Soldering Purposes (1/8 in from case for 10 s)			ΤL	260	°C


THERMAL RESISTANCE RATINGS


Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	300	°C/W
Junction-to-Ambient - t = 10 s (Note 1)	$R_{\theta JA}$	100	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Surface-mounted on FR4 board using 1 in sq. pad size

(Cu area = 1.127 in sq. [1 oz] including traces).

= Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping†
NTR4502PT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel
NVTR4502PT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

NTR4502P, NVTR4502P

Electrical Characteristics (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
OFF CHARACTERISTICS	•	•				
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = -250 μ A	-30			V
Zero Gate Voltage Drain Current	I _{DSS}	V_{GS} = 0 V, V_{DS} = -30 V T_{J} = 25°C			-1	μΑ
		$T_{\rm J} = 55^{\circ}{\rm C}$			-10	
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±20 V			±100	nA
TY CHARACTERISTICS (Note 3)		·		-	-	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = -250 \ \mu A$	-1.0		-3.0	V
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = -10 V, I _D = -1.95 A		155	200	mΩ
		$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -1.5 \text{ A}$		240	350	
Forward Transconductance	9 _{FS}	V _{DS} = -10 V, I _D =-1.25 A		3		S
CHARGES AND CAPACITANCES	•	•				
Input Capacitance	C _{ISS}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = -15 V		200		pF
Output Capacitance	C _{OSS}			80		
Reverse Transfer Capacitance	C _{RSS}			50		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = -10 V, V_{DS} = -15 V; I_D = -1.95 A		6	10	nC
Threshold Gate Charge	Q _{G(TH)}			0.3		
Gate-to-Source Charge	Q _{GS}			1		
Gate-to-Drain Charge	Q _{GD}			1.7		1
SWITCHING CHARACTERISTICS (Note	4)	•				
Turn-On Delay Time	t _{d(ON)}	V_{GS} =–10 V, V_{DD} = –15 V, I _D = –1.95 A, R _G = 6 Ω		5.2	10	ns
Rise Time	tr	I _D = −1.95 A, R _G = 6 Ω		12	20	
Turn-Off Delay Time	t _{d(OFF)}	1		19	35	1
Fall Time	t _f	1		17.5	30	
DRAIN-SOURCE DIODE CHARACTERIS	STICS (Note 3)					
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = -1.25 A		-0.8	-1.2	V
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, dI _{SD} /d _t = 100 A/µs, I _S = -1.25 A		23		ns

2. Surface-mounted on FR4 board using 1 in sq. pad size (Cu area = 1.127 in sq. [1 oz] including traces). 3. Pulse Test: pulse width \leq 300 µs, duty cycle \leq 2%.

4. Switching characteristics are independent of operating junction temperatures.