

1. Electrical Specification

1-1 Test condition

Varistor voltage In = 1 mA DC
Leakage current Vdc = 12 V DC

Maximum clamping voltage Ic = 1 A

Rated peak single pulse transient current $8/20 \mu s$ waveform, +/- each 1 time induce

Capacitance 10/1000 μs waveform Insulation resistance after reflow soldering f = 1MHz, Vrms = 0.5 V

Soldering paste: Tamura (Japan) RMA-20-21L

Stencil: SUS, 120 μ m thickness Pad size: 0.8 (Width) x 0.9 (Length)

Reflow soldering condition Pad size : 0.8 (Width) x 0.9 (Length)

0.8 (Distance between pads)

Soldering profile : 260 $\pm 5~^{\circ}$ C, 5 sec.

1-2 Electrical specification

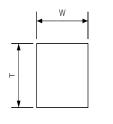
Maximum allowable continuous DC voltage	12	V	
trigger voltage / Varistor voltage / breakdown voltage	125	V	
Maximum clamping voltage	200	V	Maximum
Rated peak single pulse transient current	1	Α	Maximum
Nonlinearity coefficient	> 12		
Leakage current at continuous DC voltage	< 0.1	μ A	
Response time	< 0.5	ns	
Varistor voltage temperature coefficient	< 0.05	%/℃	
Capacitance measured at 1MHz	3	pF	Typical
Capacitance tolerance	±30	%	
Insulation resistance after reflow soldering on PCB	> 10	$\mathbf{M}\Omega$	
Operating ambient temperature	-55 to +85	$^{\circ}\!\mathbb{C}$	
Storage temperature	-55 to +125	$^{\circ}\!\mathbb{C}$	

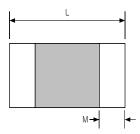
1-3 Reliability testing procedures

Reliability parameter	Test	Test methods and remarks	Test requirement
Pulse current capability	Imax 8/20 <i>μ</i> s	IEC 1051-1, Test 4.5. 10 pulses in the same direction at 2 pulses per minute at maximum peak current	d Vn /Vn ≤ 10% no visible damage
Electrostatic discharge capability	ESD C=150 pF, R=330 Ω	$\begin{tabular}{ll} \hline \textbf{IEC 1000-4-2} & & & & & & & & \\ \hline Each & 10 & times & in & positive/negative \\ direction & in & 10 & sec & at & 8KV & contact \\ discharge (Level 4) & & & & & \\ \hline \end{tabular}$	
Environmenta I reliability	Thermal shock	IEC 68-2-14 Condition for 1 cycle Step 1 : Min. -40° C, 30 ± 3 min. Step 2 : Max. +125 $^{\circ}$ C, 30 ± 3 min.	d Vn /Vn ≤ 5% no visible damage
High temperature High temperature IEC 68-2-2			d Vn /Vn ≤ 5% no visible damage
		IEC 68-2-2 Place the chip at 125 ± 5 °C for 1000 ± 24 hrs. Remove and place for 24 ± 2 hrs at room temp. condition, then measure	d Vn /Vn ≤ 5% no visible damage
		IEC 68-2-3 Apply the rated voltage for $1000\pm48 hrs$ at $85\pm3\%$. Remove and place for $24\pm2 hrs$ at room temp. condition, then measure	d Vn /Vn ≤ 5% no visible damage
	Humidity resistance	$\frac{IEC~68\text{-}2\text{-}30}{\text{Place the chip at }40\pm2\%~\text{and }90\text{ to }95\%}$ humidity for $1000\pm24\text{hrs}$. Remove and place for $24\pm2\text{hrs}$ at room temp. condition, then measure	d Vn /Vn ≤ 10% no visible damage
	Pressure cooker test	Place the chip at 2 atm, 120 °C, 85%RH for 60 hrs. Remove and place for 24 ± 2hrs at room temp. condition, then measure	d Vn /Vn ≤ 10% no visible damage
	Operating life	Apply the rated voltage for 1000 ± 48hrs at 125 ± 3 ℃. Remove and place for 24 ± 2hrs at room temp. condition, then measure	d Vn /Vn ≤ 10% no visible damage

Mechanical	Solderability	IEC 68-2-58	At least 95% of terminal	
Reliability		Solder bath method, 230 \pm 5 $^{\circ}{\!$	electrode is covered by new solder	
	Resistance to	IEC 68-2-58	d $ Vn /Vn \le 5\%$	
soldering heat	Solder bath method, $260\pm5^\circ\!\!\!\!\!\!^\circ$, $10\pm0.5s$, $270\pm5^\circ\!\!\!\!\!\!^\circ$, $3\pm0.5s$	no visible damage		
	Bending strength	IEC 68-2-21	d Vn /Vn ≤ 5%	
		Warp:2mm, Speed:0.5mm/sec, Duration: 10sec. The measurement shall be made with board in the bent position	no visible damage	
	Adhesive strength	<u>IEC 68-2-22</u>	Strength>10 N	
		Applied force on SMD chip by fracture from PCB	no visible damage	

2. Material Specification


Body ZnO based ceramics


Internal electrode Silver – Palladium

External electrode Silver – Nickel – Tin

Thickness of Ni/Sn plating layer Nickel $> 1 \mu m$, Tin $> 2 \mu m$

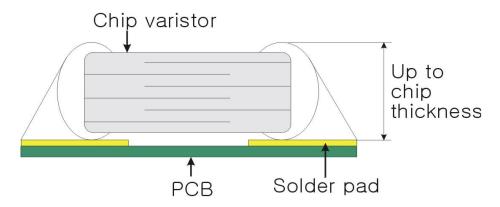
3. Dimension Specification

Size	L(mm)	W(mm)	T(mm)	M(mm)
0402	1.0 ± 0.10	0.5 ± 0.10	≤ 0.6	0.20 ± 0.10
0603	1.6±0.15	0.8 ± 0.15	≤ 0.9	0.35 ± 0.10

4. Soldering Recommendations

4-1 Soldering profile

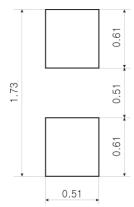
Rev: 01.06.2018 3/5 www.leiditech.com



4 1 1 Pb free solder paste

4-1-2 Repair soldering

- Optimum solder amount when corrections are made using a soldering iron


4-2 Soldering guidelines

- Our chip varistors are designed for reflow soldering only. Do not use flow soldering
- Use non-activated flux (CI content 0.2% max.)
- Follow the recommended soldering conditions to avoid varistor damage.

4-3 Solder pad layout

Rev: 01.06.2018 4/5 www.leiditech.com

5. Storage condition

- Chip varistors can experience degradation of termination solderability when subjected to high temperature of humidity, or if exposed to sulfur or chlorine gases.
- Avoid mechanical shock (ex. Falling) to the chip varistor to prevent mechanical cracking inside of the ceramic dielectric due to its own weight.
- Use chips within 6 months.
 If 6 months of more have elapsed, check solderability before use.-

6. Description about package label

Qunatity: 4,000 pcs

- Quantity of shipping chip varistor

Shanghai Leiditech Electronic Co.,Ltd

Email: sale1@leiditech.com Tel: +86- 021 50828806 Fax: +86- 021 50477059