

R2A15908SP

5 Input Selector 2ch Electronic Volume with Tone & Surround

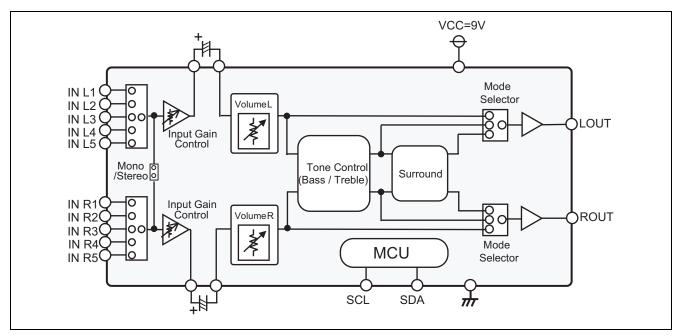
REJ03F0270-0100 Rev.1.00 Jan 25, 2008

Description

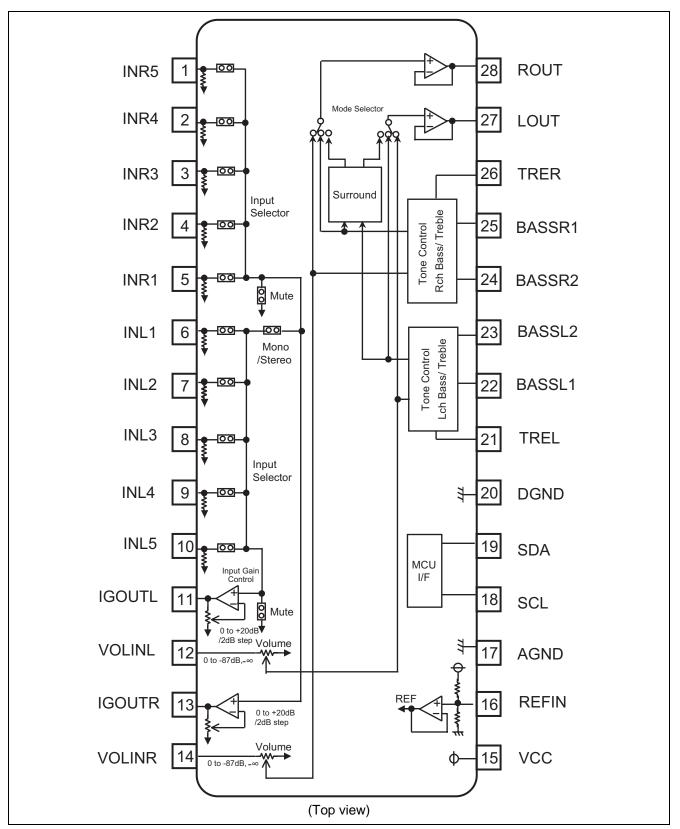
The R2A15908SP is an optimum audio signal processor IC for TV. It has a 5ch input selector with mono switch, surround, tone control (2band), input gain control and 2ch master volume. It can control all of these functions with I_2C bus.

Features

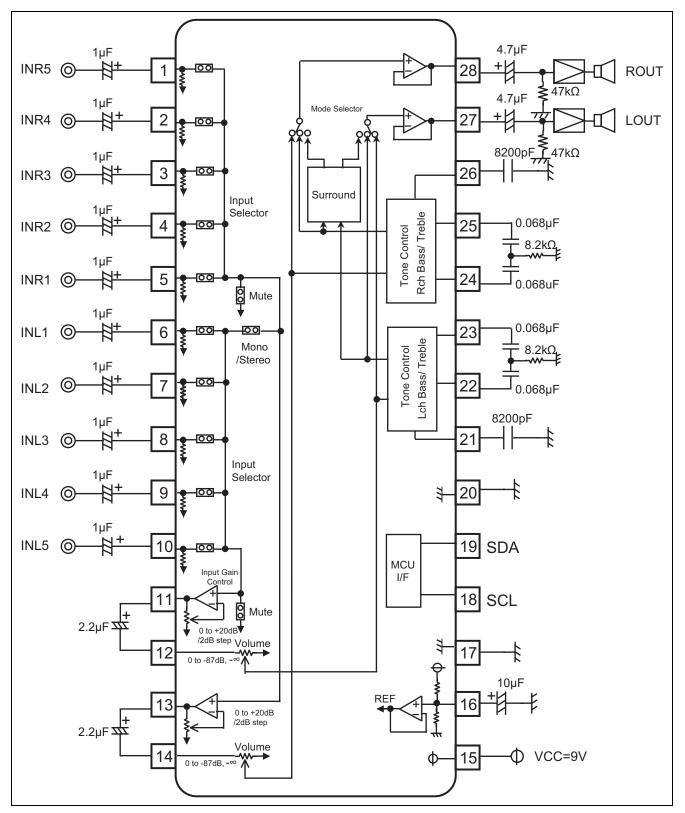
- Volume 0 to -87dB, -∞ / 1dB step Each channel is independent control.
- 5 input selector + MUTE with mono switch
- Input gain control 0dB to +20dB / 2dB step
- Tone control Bass : -14dB to +14dB / 2dB step Treble : - 14dB to +14dB / 2dB step
- Surround Low / High
- Mode selector Bypass / Tone / Tone & Surround
- I₂C-bus control
- Package SOP with 28 pin


Application

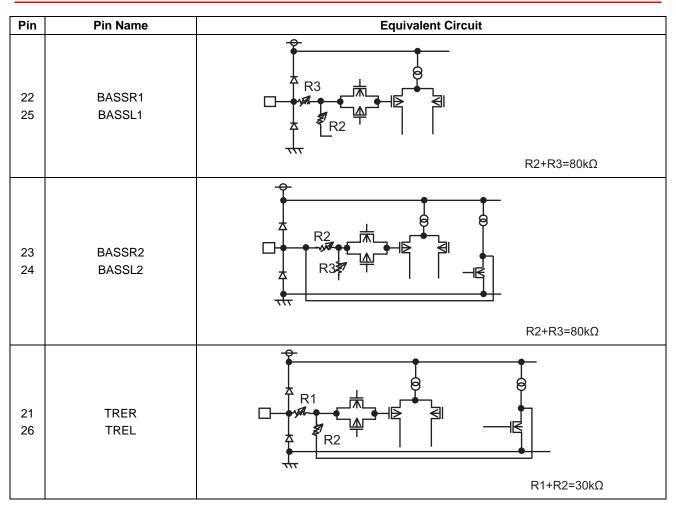
• Mini stereo, TV, etc.


Recommended Operating Condition

• Supply voltage $V_{CC} = 9.0V$ (typ)


System Configuration

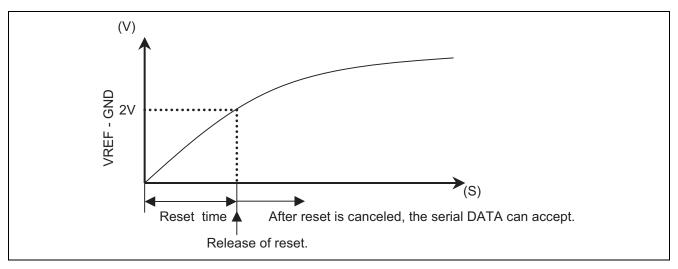
Block Diagram and Pin Configuration


Application Example

RENESAS

Equivalent Circuit of Pin Interface Block

Pin	Pin Name	Equivalent Circuit
1	INR5	
2	INR4	
3	INR3	∮
4	INR2	
5	INR1	
6	INL1	
7	INL2	
8	INL3	4 ≸ 50k
9	INL4	+++ ref
9 10	INL4 INL5	
10	INLO	<u>^</u>
11 13 27 28	IGOUTL IGOUTR LOUT ROUT	
12 14	VOLINL VOLINR	R_1 R_2 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_2 R_1 R_1 R_2 R_1 R_1 R_2 R_1 R_1 R_2 R_1 R_1 R_2 R_1 R_1 R_2 R_1 R_1 R_2 R_1 R_1 R_2 R_1 R_1 R_2 R_1 R_2 R_2 R_1 R_2 R_3
18	SCL	
19	SDA	
16	REFIN	
15	VCC	
17	AGND	
20	DGND	


Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit	Condition
Power supply	V _{cc}	10	V	
Power dissipation	Pd		W	Ta ≤ 25°C
Thermal derating	K		mW / °C	Ta > 25°C (Circuit board installation)
Operating temperature	Topr	-20 to +75	°C	
Storage temperature	Tstg	-40 to +125	°C	

Power on Reset

This IC built-in the power on reset function.

The voltage of VREF-GND less than 2V, the serial DATA can not accept.

I₂C Bus Format

	MSB LSB		MSB	LSB		MSB	LSB		
S	Slave Address	А	Sub Address		А	Data		А	Р
1 bit	8 bit	1 bit	8 bit		1 bit	8 bit		1 bit	1 bit

S: Starting Term

A: Acknowledge Bit

P: Stop Term

If more than one Data Byte is transmitted, then the significant SUB ADDRESS bits are auto incremented. $00H\rightarrow 01H\rightarrow 02H\rightarrow 03H\rightarrow 04H\rightarrow 00H$

1. Slave Address

MSB							LSB
1	0	0	0	0	0	1	R/W _B

 $R/W_B{=}0$: Write mode for register setting $R/W_B{=}1$: Not available

2. Sub Address Table

Sub	BIT									
Address	D7	D7 D6 D5 D4 D3 D2 D1								
00H		<1>Lch Master volume								
01H			<1>F	Rch Master vo	lume			0		
02H	<	2>Input select	or		<3>Inp	out gain		0		
03H	<4>Stere	eo / Mono	<5>Mode	e selector	0	0	0	0		
04H	<6>Tone control Bass <6>Tone control Treble									

3. Data Table

<1> Master Volume (Sub Address: 00H, 01H)

ATT	Lch	Sub	00H	D7	D6	D5	D4	D3	D2	D1
ATT	Rch	Address	01H	D7	D6	D5	D4	D3	D2	D1
0	dB			0	0	0	0	0	0	0
-1	dB			0	0	0	0	0	0	1
-2	2dB			0	0	0	0	0	1	0
-3	BdB			0	0	0	0	0	1	1
-4	ldB			0	0	0	0	1	0	0
-5	δdB			0	0	0	0	1	0	1
-6	бdВ			0	0	0	0	1	1	0
-7	′dB			0	0	0	0	1	1	1
-8	BdB			0	0	0	1	0	0	0
-9)dB			0	0	0	1	0	0	1
-1	0dB			0	0	0	1	0	1	0
-1	1dB			0	0	0	1	0	1	1
-1:	2dB			0	0	0	1	1	0	0
-1	3dB			0	0	0	1	1	0	1
-1-	4dB]		0	0	0	1	1	1	0
-1	5dB]		0	0	0	1	1	1	1
-1	6dB]		0	0	1	0	0	0	0
-1	7dB			0	0	1	0	0	0	1
-1	8dB			0	0	1	0	0	1	0
-1	9dB			0	0	1	0	0	1	1
-2	0dB			0	0	1	0	1	0	0
-2	1dB			0	0	1	0	1	0	1
-2	2dB			0	0	1	0	1	1	0
-2	3dB	l ab		0	0	1	0	1	1	1
-2-	4dB	– Lch Rch	Volume	0	0	1	1	0	0	0
-2	5dB	K CH		0	0	1	1	0	0	1
-2	6dB			0	0	1	1	0	1	0
-2	7dB			0	0	1	1	0	1	1
-2	8dB			0	0	1	1	1	0	0
-2	9dB			0	0	1	1	1	0	1
-3	0dB			0	0	1	1	1	1	0
-3	1dB			0	0	1	1	1	1	1
-3	2dB			0	1	0	0	0	0	0
-3	3dB			0	1	0	0	0	0	1
-3-	4dB]		0	1	0	0	0	1	0
-3	5dB]		0	1	0	0	0	1	1
-3	6dB]		0	1	0	0	1	0	0
-3	7dB]		0	1	0	0	1	0	1
-3	8dB]		0	1	0	0	1	1	0
-3	9dB]		0	1	0	0	1	1	1
-4	0dB	1		0	1	0	1	0	0	0
-4	1dB	1		0	1	0	1	0	0	1
-42	2dB	1		0	1	0	1	0	1	0
-4	3dB	1		0	1	0	1	0	1	1
-4-	4dB	1		0	1	0	1	1	0	0
-4	5dB	1		0	1	0	1	1	0	1
	6dB	1		0	1	0	1	1	1	0
	7dB	1		0	1	0	1	1	1	1
	8dB	1		0	1	1	0	0	0	0

RENESAS

ATT	Lch	Sub	00H	D7	D6	D5	D4	D3	D2	D1
ATT	Rch	Address	01H	D7	D6	D5	D4	D3	D2	D1
-4	9dB			0	1	1	0	0	0	1
-5	0dB			0	1	1	0	0	1	0
-5	1dB			0	1	1	0	0	1	1
-5	2dB			0	1	1	0	1	0	0
-5	3dB			0	1	1	0	1	0	1
-5	4dB			0	1	1	0	1	1	0
-5	5dB			0	1	1	0	1	1	1
-5	6dB			0	1	1	1	0	0	0
-5	7dB			0	1	1	1	0	0	1
-5	8dB			0	1	1	1	0	1	0
-5	9dB			0	1	1	1	0	1	1
-6	0dB	1		0	1	1	1	1	0	0
-6	1dB	1		0	1	1	1	1	0	1
-6	2dB	1		0	1	1	1	1	1	0
-6	3dB			0	1	1	1	1	1	1
-6	4dB			1	0	0	0	0	0	0
-6	5dB		Lch	1	0	0	0	0	0	1
-6	6dB			1	0	0	0	0	1	0
-6	7dB			1	0	0	0	0	1	1
-6	8dB	L ch		1	0	0	0	1	0	0
-6	9dB	R ch	Volume	1	0	0	0	1	0	1
-7	0dB			1	0	0	0	1	1	0
-7	1dB			1	0	0	0	1	1	1
-7	2dB			1	0	0	1	0	0	0
-7	3dB			1	0	0	1	0	0	1
-7	4dB			1	0	0	1	0	1	0
-7	5dB			1	0	0	1	0	1	1
-7	6dB			1	0	0	1	1	0	0
-7	7dB			1	0	0	1	1	0	1
-7	8dB			1	0	0	1	1	1	0
-7	9dB			1	0	0	1	1	1	1
-8	0dB			1	0	1	0	0	0	0
-8	1dB	1		1	0	1	0	0	0	1
-8	2dB	1		1	0	1	0	0	1	0
-8	3dB	1		1	0	1	0	0	1	1
-8	4dB	1		1	0	1	0	1	0	0
-8	5dB	1		1	0	1	0	1	0	1
	6dB	1		1	0	1	0	1	1	0
	7dB	1		1	0	1	0	1	1	1
-	-∞	1		1	1	1	1	1	1	1

* It's initial setting when power is turned on.

Setting	Input Selector						
Setting	D7	D6	D5				
IN1	0	0	0				
IN2	0	0	1				
IN3	0	1	0				
IN4	0	1	1				
IN5	1	0	0				
MUTE	1	1	1				

<3> Input Gain (Sub Address: 02H)

Setting	Input Gain							
Setting	D4	D3	D2	D1				
0dB	0	0	0	0				
+2dB	0	0	0	1				
+4dB	0	0	1	0				
+6dB	0	0	1	1				
+8dB	0	1	0	0				
+10dB	0	1	0	1				
+12dB	0	1	1	0				
+14dB	0	1	1	1				
+16dB	1	0	0	0				
+18db	1	0	0	1				
+20dB	1	0	1	0				

<4> Stereo / Mono Selector (Sub Address: 03H)

Setting	Mode Selector				
Setting	D7	D6			
Stereo	0	0			
Lch Mono	0	1			
Rch Mono	1	0			

<5> Mode Selector (Sub Address: 03H)

Sotting	Mode Selector				
Setting	D5	D4			
Bypass	0	0			
Tone	0	1			
Tone & Surround Hi	1	0			
Tone & Surround Low	1	1			

* It's initial setting when power is turned on.

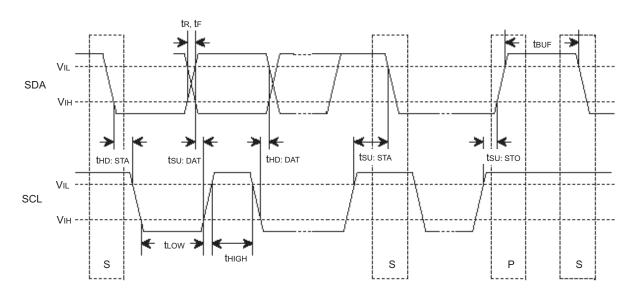
<6> Tone control (Sub Address: 04H)

Gain	Bass	D7	D6	D5	D4
Gain	Treble	D3	D2	D1	D0
OdB 2dB 4dB 6dB 8dB 10dB 12dB 14dB		A	0	0	0
			0	0	1
			0	1	0
			0	1	1
			1	0	0
			1	0	1
			1	1	0
			1	1	1

If A = 0 means Tone control gain CUT(-), then A = 1 means Tone control gain BOOST(+).

* It's initial setting when power is turned on.

Electrical Characteristics


 $(V_{CC} = 9V, Ta = 25^{\circ}C, Vi = 100mVrms, f = 1kHz, Tone control = 0dB, Rg = 600\Omega, RL = 47k\Omega)$

General Characteristics

Parameter	Symbol	Limits		Unit	Condition			
Parameter	Symbol	Min	Typ Max		Unit	Condition		
Operational power supply	V _{CC}	4.75	9.0	9.7	V			
Supply current	I _{CC}		15	25	mA	No signal		
Reference voltage	Vref	4.0	4.5	5.0	V	No signal		
Input impedance	RIN	35	50	65	kΩ			
Maximum output voltage	VOM	_	2.5	—	Vrms	VOL = 0dB, THD = 1%		
Volume maximum	VOLmax	-2	0	+2	dB	VOL = 0dB		
Volume minimum	VOLmin	_	-100	-90	dB	VOL = Mute, Vin = 1Vrms, IHF-A		
Channel balance	CBAL	-1.5	0	1.5	dB	VOL = 0dB		
Total harmonic distortion	THD	_	0.01	0.5	%	400Hz to 30kHz BPF, Vo = 0.5Vrms		
Input selector cross talk	СТ	_	-100	-70	dB	400Hz to 30kHz BPF Vin = 1Vrms		
Channel separation	CS	_	-100	-70	dB	400Hz to 30kHz BPF Vin = 1Vrms		
Output noise 1	Vno1	_	30	50	μVrms	VOL = 0dB, Input gain = 0dB Tone = 0dB, Surround = Low, IHF-A		
Output noise 2	Vno2		5	15	μVrms	VOL = Mute, Input gain = 0dB Bypass, IHF-A		

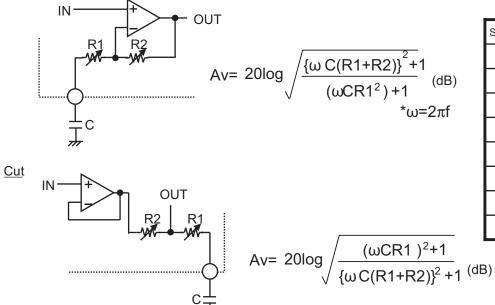
Tone Control

Parameter	Symbol	Limits			Unit	Condition	
Falameter	Symbol	Min	Тур	Max	Onit	Condition	
Tone control voltage gain (Boost/ Bass)	G(Bass)B	+11.5	+14	+16.5	dB	f = 100Hz, Bass = +14dB	
Tone control voltage gain (Cut/ Bass)	G(Bass)C	-16.5	-14	-11.5	dB	f = 100Hz, Bass = -14dB	
Tone control voltage gain (Flat/ Bass)	G(Bass)F	-2	0	+2	dB	f = 100Hz, Bass = 0dB	
Tone control voltage gain (Boost/ Treble)	G(Treble)B	+11.5	+14	+16.5	dB	f = 10kHz, Tre = +14dB	
Tone control voltage gain (Cut/ Treble)	G(Treble)C	-16.5	-14	-11.5	dB	f = 10kHz, Tre = $-14dB$	
Tone control voltage gain (Flat/ Treble)	G(Treble)F	-2	0	+2	dB	f = 100Hz, Tre = 0dB	

Bus Line Timing Specification

Parameters	Symbol	Min	Max	Units
Min input low voltage	VIL	0	1.5	V
Max input high voltage	VIH	3.0	5.0	V
SCL clock frequency	f _{SCL}	_	100	kHz
Time the bus must be free before a new transmission can start	t _{BUF}	4.7	—	μS
Hold time start condition. After this period the first clock pulse is generated	t _{HDSTA}	4.0	—	μS
The Low period of the clock	t _{Low}	4.7	—	μS
The High period of the clock	t _{High}	4.0	—	μS
Set-up time for start condition (Only relevant for a repeated start condition)	t _{SU: STA}	4.7	—	μS
Hold time DATA	t _{HD: DAT}	0	—	μS
Set-up time DATA	t _{SU: DAT}	250	—	ns
Rise time of both SDA & SCL lines	t _R	_	1000	ns
Fall time of both SDA & SCL lines	t _F		300	ns
Set-up time for stop condition	t _{SU: STO}	4.0	_	μS

Function Description


1. Tone Control

<1> Bass Circuit

		1			8.2kΩ =0.068µF
Boos		fo = $\frac{1}{2\pi \sqrt{R1(R2+R3)C1C2}}$ (Hz)	Setting [dB]	R2[Ω]	R3[Ω]
		• • • •	± 0	0	80000
		$Q \cong \frac{1}{C1+C2} \sqrt{\frac{C1C2R2}{R1}} (R3=0)$	± 2	19820	60180
		(R2+R3	± 4	35570	44430
	·	$Gv = 20log\left(\frac{\frac{R2+R3}{R1}+2}{\frac{R3}{R1}+2}\right) (dB)$ (C1=C2)	± 6	48040	31920
	$ \begin{array}{c} \hline \\ \hline $	$\left[\frac{R_3}{R_1} + 2 \right]$	± 8	58020	21980
		C 9 (C1=C2)	± 10	65910	14090
<u>Cut</u>	~	fo = (Hz)	± 12	72190	7810
		fo = $\frac{1}{2\pi\sqrt{R1(R2+R3)C1C2}}$ (Hz)	± 14	77170	2830
		$Q \cong \frac{1}{C1+C2} \sqrt{\frac{C1C2R2}{R1}} (R3=0)$			
		$Gv = 20log\left(\frac{\frac{R3}{R1}+2}{\frac{R2+R3}{R1}+2}\right) (dB)$ (C1=C2)			

<2> Treble Circuit

Boost

୷

		-
Setting [dB]	R1 [Ω]	R2 [Ω]
± 0	30000	0
± 2	23810	6190
± 4	18890	11110
± 6	14970	15030
± 8	11850	18150
± 10	9350	20650
± 12	7340	22660
± 14	5730	24270

*ω=2πf

C=8200pF

RENESAS

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the date this document, when exporting the products or the technology described herein, you should follow the applicable export control laws and regulations.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a coupling or otherwise relying on the information included in this document. Dut Renesas asproaces for description or tested or applicable exporting the endotes for the support of the set of the support of the sup

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com