# 4/3/2/1-Phase PWM Controller for AMD AM2/AM2+ CPUs

### **General Description**

The RT8855 is a 4/3/2/1-phase synchronous buck controller with two integrated MOSFET drivers for CPU power application and a single-phase buck with integrated MOSFET driver for North-Bridge (NB) chipset. The RT8855 uses differential inductor DCR current sense to achieve phase current balance and active voltage positioning. Other features include adjustable operating frequency, power good indication, external error-amp compensation, over voltage protection, over current protection and enable/ shutdown for various applications. The RT8855 comes to a small footprint with WQFN-48L 7x7 package.

## Applications

- Desktop CPU Core Power
- Low Voltage, High Current DC/DC Converter

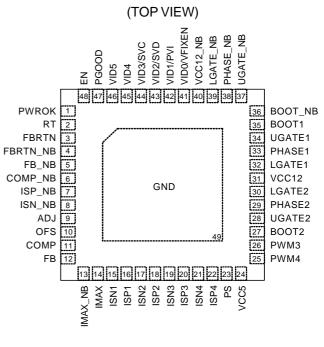
### **Ordering Information**

### RT8855 🗖 🗖

-Package Type QW : WQFN-48L 7x7 (W-Type)

---Lead Plating System

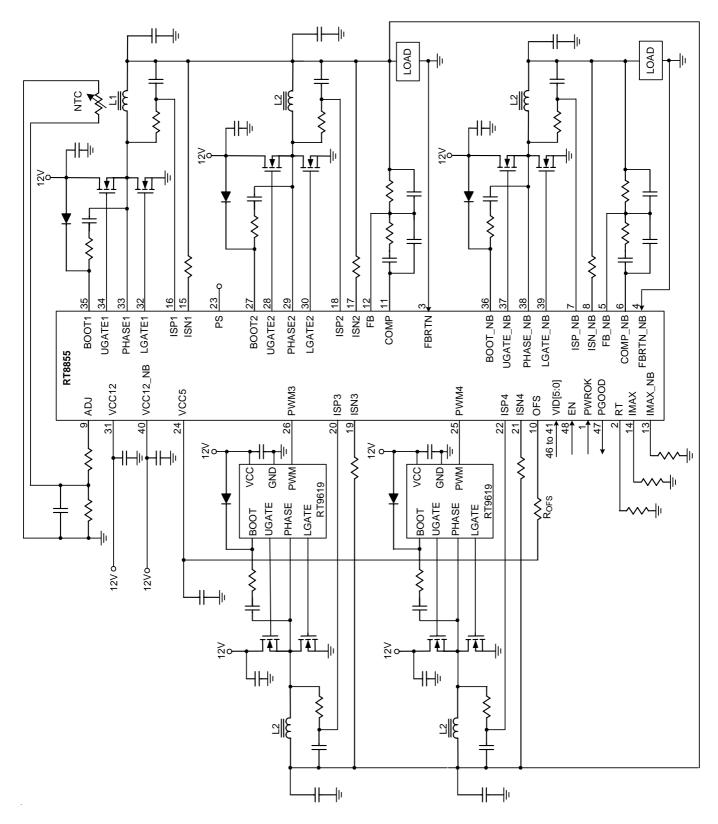
G : Green (Halogen Free and Pb Free)


Note :

- Richtek products are : • RoHS compliant and compatible with the current require
  - ments of IPC/JEDEC J-STD-020.
  - Suitable for use in SnPb or Pb-free soldering processes.

### Features

- 12V Power Supply Voltage
- 4/3/2/1-Phase Power Conversion for V<sub>CORE</sub> Power
- 3 Embedded MOSFET Drivers (2 for CPU and 1 for NB)
- Internal Regulated 5V Output
- Support AMD AM2 6-bit Parallel and AM2+ 7-bit Serial VID Tables
- Continuous Differential Inductor DCR Current Sense
- Adjustable Frequency (Typically at 300kHz)
- Selectable 1 or 2 Phase in Power-Saving (PS) Mode
- Phase-Interleaving for V<sub>CORE</sub> and NB Controller
- Power Good Indication
- Adjustable Over Current Protection
- Over Voltage Protection
- Small 48-Lead WQFN Package
- RoHS Compliant and Halogen Free


## **Pin Configurations**



WQFN-48L 7x7



## **Typical Application Circuit**

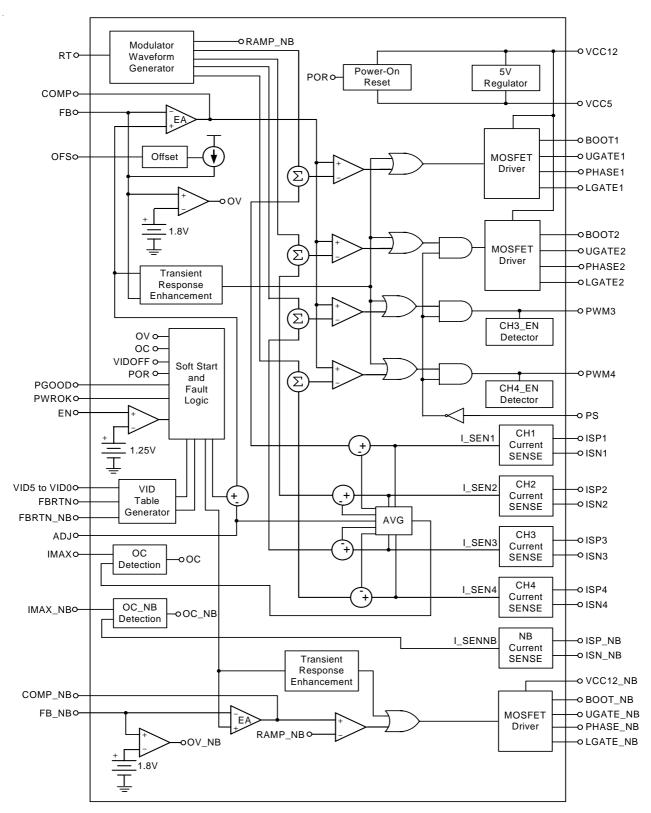


| SVID[6:0]VoltageSVID[6:0]VoltageSVID[6:0]Voltage00000001.550001000001.150010000000.750011000000.350000000101.537501000011.137510000100.737511000110.33750000101.525001001011.12501000100.725011001010.32500000111.52500100101.12501000100.72501100100.32500000101.520001001001.100010001000.70001100100.326000001101.475001001011.067510001010.687511001010.227500001111.475001001111.055010010100.657011010100.250000010011.475001010011.05001001000.637511010100.257500010011.487501010111.02501001100.637511010100.257500010011.487501010101.02501001010.637511010100.225000010011.487501010111.01251001010.637511010100.225000010011.487501010101.025010010100.637511010100.225000010011.487501010101.02501001010.63751101010.225000010011.487501010101.02501001010.63751101010.225000010011.48750101011.0250100101<                                                                                                                                                                                                                                  |           | Table 1. 7-bit VID Code Table for AM2+ CPU (Serial) |           |         |           |         |           |         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------|-----------|---------|-----------|---------|-----------|---------|--|
| 0000001     1.5375     0100001     1.1375     1000010     0.7375     1100001     0.3375       0000101     1.5250     0100010     1.1250     1000010     0.7250     1100010     0.3250       0000101     1.5125     0100011     1.1125     1000110     0.7755     1100111     0.3125       0000100     1.5000     0100100     1.1000     1000100     0.7000     1100100     0.3000       0000101     1.4875     0100101     1.0875     1000110     0.6875     1100111     0.2875       0000101     1.4750     0101001     1.0500     1001000     0.6500     110100     0.2500       000100     1.4500     0101001     1.0525     1001011     0.6625     110111     0.2250       000101     1.4375     010101     1.0250     100101     0.6825     110110     0.2250       0001011     1.4250     0101011     1.0251     100110     0.6825     110111     0.2250       001100     1.4250     0101010     1.0250                                                                                                                                             | SVID[6:0] | Voltage                                             | SVID[6:0] | Voltage | SVID[6:0] | Voltage | SVID[6:0] | Voltage |  |
| 0000010     1.5250     0100010     1.1250     100011     0.7250     1100010     0.3250       0000101     1.5125     0100011     1.1125     1000010     0.7125     1100011     0.3125       0000100     1.5000     0100100     1.1000     100100     0.7000     110010     0.3000       0000101     1.4875     0100101     1.0875     1000101     0.6675     1100111     0.2875       0000101     1.4750     0100101     1.0750     1000101     0.6675     1100111     0.2875       0000101     1.4520     0101001     1.0501     100100     0.6650     110101     0.2250       000100     1.4520     010101     1.0250     100101     0.6825     110101     0.2250       000101     1.4250     010101     1.0250     100101     0.6825     110111     0.2250       000101     1.4250     010101     1.0251     100110     0.6825     110111     0.2250       001010     1.4250     0101010     0.9875     1001010<                                                                                                                                        | 0000000   | 1.5500                                              | 0100000   | 1.1500  | 1000000   | 0.7500  | 1100000   | 0.3500  |  |
| 0000011     1.5125     0100011     1.1125     1000110     0.7125     1100011     0.3125       0000100     1.5000     0100100     1.1000     1000100     0.7000     1100100     0.3000       0000101     1.4875     0100101     1.0875     1000101     0.6875     1100110     0.2875       0000111     1.4750     0100111     1.0625     1000111     0.6625     1100111     0.2875       0000101     1.4500     010100     1.0500     100100     0.6500     110100     0.2500       0001001     1.4500     010101     1.0250     100101     0.6625     110101     0.2250       0001001     1.4250     010101     1.0250     100101     0.6625     110101     0.2250       0001010     1.4250     010101     1.0250     100110     0.6525     110111     0.2125       0001100     1.4250     010111     1.0250     100110     0.6575     110110     0.2250       0001101     1.4250     0101010     1.0250     11011                                                                                                                                        | 0000001   | 1.5375                                              | 0100001   | 1.1375  | 1000001   | 0.7375  | 1100001   | 0.3375  |  |
| 0000100     1.5000     0100100     1.1000     1000100     0.7000     1100100     0.3000       0000101     1.4875     0100101     1.0875     1000101     0.6875     1100110     0.2875       0000101     1.4750     0100110     1.0750     1000110     0.6750     1100110     0.2750       0000101     1.4500     0101100     1.0500     100100     0.6850     110100     0.2500       0001001     1.4500     010100     1.0500     100100     0.6850     110100     0.2500       0001001     1.4250     010101     1.0250     100101     0.6850     110101     0.2250       0001010     1.4250     010101     1.0250     100101     0.6850     110101     0.2250       0001010     1.4250     010101     1.0250     100110     0.6500     110101     0.2250       0001101     1.4250     010101     1.0250     100110     0.5655     110111     0.1255       0001101     1.4375     0101010     0.9750     1001101                                                                                                                                        | 0000010   | 1.5250                                              | 0100010   | 1.1250  | 1000010   | 0.7250  | 1100010   | 0.3250  |  |
| 00001011.487501001011.087510001010.687511001010.287500001101.475001001101.075010001100.675011001100.275000001111.462501001111.062510001110.662511001110.262500010001.450001010001.050010010000.650011010000.250000010011.437501010011.025010010100.63751101010.237500010101.42500101011.025010010100.62501101010.225000010111.42500101011.025010010100.62501101010.225000010011.437501010111.025010010100.62501101010.225000011011.425001010111.025010011010.61251101010.225000011011.437501010111.025010011010.61251101010.20000011011.33750101010.987510011010.58751101100.18750011101.35000101100.97501001110.56251101110.162500100011.35000110000.95001010000.55001110000.137500100111.32500110010.92501010010.52501110010.125000100111.32500110010.92501010010.52501110010.125500100111.32500110010.9250 <t< td=""><td>0000011</td><td>1.5125</td><td>0100011</td><td>1.1125</td><td>1000011</td><td>0.7125</td><td>1100011</td><td>0.3125</td></t<>                                                                                                 | 0000011   | 1.5125                                              | 0100011   | 1.1125  | 1000011   | 0.7125  | 1100011   | 0.3125  |  |
| 00001101.475001001101.075010001100.675011001100.275000001111.482501001111.062510001110.662511001110.262500010001.450001010001.050010010000.650011010000.250000010011.437501010111.037510010100.637511010100.225000010101.42500101011.025010010100.637511010100.225000010111.42500101011.025010010100.625011010100.225000011011.44000101011.000010011000.60001101000.200000011011.4550101110.987510011010.58751101110.212500011011.375001011010.987510011010.587511011010.200000011011.375001011010.987510011010.575011011010.187500111011.37500101110.975010011100.550011101000.160000100011.35000110000.95001010000.550011100100.155000100111.32500110010.92501010010.52501110010.125000100111.32500110010.92501010010.52501110010.125000100111.32500110010.92501010010.52501110010.125000100101.32500110010.9250 </td <td>0000100</td> <td>1.5000</td> <td>0100100</td> <td>1.1000</td> <td>1000100</td> <td>0.7000</td> <td>1100100</td> <td>0.3000</td>                                                                                               | 0000100   | 1.5000                                              | 0100100   | 1.1000  | 1000100   | 0.7000  | 1100100   | 0.3000  |  |
| 0000111     1.4625     0100111     1.0625     1000111     0.6625     1100111     0.2625       0001000     1.4500     0101000     1.0500     1001000     0.6500     1101000     0.2500       0001001     1.4375     0101001     1.0375     1001001     0.6375     1101001     0.2375       000101     1.4250     010101     1.0250     100101     0.6250     110101     0.2250       000101     1.4250     010101     1.0251     100101     0.6253     110101     0.2250       0001101     1.4250     010101     1.0251     100101     0.6600     110101     0.2125       0001101     1.4000     010110     1.0000     100110     0.6600     110110     0.2125       0001101     1.3875     010111     0.9875     100110     0.5875     110111     0.1875       0001101     1.3750     0101100     0.9750     100111     0.5500     111111     0.1625       0100001     1.3375     0110010     0.9250     1010010 </td <td>0000101</td> <td>1.4875</td> <td>0100101</td> <td>1.0875</td> <td>1000101</td> <td>0.6875</td> <td>1100101</td> <td>0.2875</td> | 0000101   | 1.4875                                              | 0100101   | 1.0875  | 1000101   | 0.6875  | 1100101   | 0.2875  |  |
| 00010001.450001010001.050010010000.650011010000.250000010011.437501010011.037510010010.637511010010.237500010101.425001010101.025010010100.625011010100.225000010111.425001010111.012510010110.612511010110.212500011011.400001011001.000010011000.660011011000.200000011011.387501011010.987510011010.587511011010.187500011011.375001011100.975010011110.557011011110.162500011011.362501011110.962510011110.550011100000.150000100011.350001100000.950010100000.550011100000.150000100011.325001100110.937510100110.537511100110.125100100011.325001100100.925010100100.550011100100.125000100111.325001100100.925010101010.512511101110.112500100111.325001101010.925010101010.550011100100.125000101011.325001101010.925010101010.550011101010.125100101011.325001101010.837510101010.437511101010.075000101011.22500110                                                                                                                                                                                                                             | 0000110   | 1.4750                                              | 0100110   | 1.0750  | 1000110   | 0.6750  | 1100110   | 0.2750  |  |
| 00010011.437501010011.037510010010.637511010010.237500010101.425001010101.025010010100.6325011010100.225000010111.412501010111.012510010110.612511010100.212500011001.400001011001.000010011000.60001101100.212500011011.387501011010.987510011010.587511011010.200000011011.387501011010.975010011100.575011011100.175000011101.375001011100.975010011100.575011011110.162500100011.35000110000.95001010000.55001110000.150000100011.325001100110.937510100110.537511100110.125000100101.325001100100.925010100100.525011100100.125000100111.312501100110.912510100110.512511100110.125100101011.287501101100.875010101010.487511101010.087500101011.287501101110.862510101110.46251110110.067500101011.225001110100.837510110100.43751111010.037500101011.225001110100.825010110100.42501111010.025000110101.22500111010 <td>0000111</td> <td>1.4625</td> <td>0100111</td> <td>1.0625</td> <td>1000111</td> <td>0.6625</td> <td>1100111</td> <td>0.2625</td>                                                                                            | 0000111   | 1.4625                                              | 0100111   | 1.0625  | 1000111   | 0.6625  | 1100111   | 0.2625  |  |
| 0001010     1.4250     0101010     1.0250     1001010     0.6250     1101010     0.2250       0001011     1.4125     0101011     1.0125     1001011     0.6125     110101     0.2125       0001100     1.4000     0101100     1.0000     1001100     0.6000     110110     0.2125       0001101     1.3875     0101101     0.9875     1001101     0.5875     110110     0.1875       0001101     1.3875     0101110     0.9750     1001110     0.5750     110110     0.1750       0001101     1.3500     011000     0.9750     1001111     0.5625     110111     0.1625       0010001     1.3500     011000     0.9950     101000     0.5500     111000     0.1500       0010001     1.3375     0110011     0.9375     1010011     0.5375     111001     0.1250       0010011     1.3125     0110011     0.9125     1010011     0.5125     111001     0.1250       0010101     1.2875     0110101     0.8750     1                                                                                                                                        | 0001000   | 1.4500                                              | 0101000   | 1.0500  | 1001000   | 0.6500  | 1101000   | 0.2500  |  |
| 0001011     1.4125     0101011     1.0125     1001011     0.6125     1101011     0.2125       0001100     1.4000     0101100     1.0000     1001100     0.6000     1101100     0.2000       0001101     1.3875     0101101     0.9875     1001101     0.5875     1101101     0.1875       0001110     1.3750     0101110     0.9750     1001111     0.5625     1101111     0.1625       0001111     1.3625     0101111     0.9625     1001111     0.5625     1101111     0.1625       0010001     1.3500     0110000     0.9500     1010001     0.5500     1110000     0.1500       0010001     1.3250     0110011     0.9375     1010001     0.5250     1110010     0.1250       0010011     1.3250     0110011     0.9250     1010011     0.5125     1110011     0.1250       0010101     1.3250     0110101     0.9250     101011     0.5125     1110011     0.1250       0010101     1.2875     0110101     0.8251                                                                                                                                    | 0001001   | 1.4375                                              | 0101001   | 1.0375  | 1001001   | 0.6375  | 1101001   | 0.2375  |  |
| 00011001.400001011001.000010011000.600011011000.200000011011.387501011010.987510011010.587511011010.187500011101.375001011100.975010011100.575011011100.175000011111.362501011110.962510011110.562511011110.16250010001.350001100000.950010100000.550011100000.15000010011.337501100110.93751010010.537511100110.13750010011.325001100100.925010100100.525011100100.12500010011.325001100110.912510100110.512511100110.12500010011.325001101000.900010101000.500011101000.10000010101.325001101010.912510100110.512511100110.125000100111.325001101000.900010101000.50001110100.087500101011.287501101100.875010101010.48751110110.067500101011.250001110010.825010110100.442511110110.025000110011.225001110110.825010110100.437511110010.025000110011.225001110100.825010110100.42501111010.025000110111.22500111010 <t< td=""><td>0001010</td><td>1.4250</td><td>0101010</td><td>1.0250</td><td>1001010</td><td>0.6250</td><td>1101010</td><td>0.2250</td></t<>                                                                                        | 0001010   | 1.4250                                              | 0101010   | 1.0250  | 1001010   | 0.6250  | 1101010   | 0.2250  |  |
| 00011011.387501011010.987510011010.587511011010.187500011101.375001011100.975010011100.575011011100.175000011111.362501011110.962510011110.562511011110.162500100001.350001100000.950010100000.550011100000.150000100011.337501100110.93751010010.537511100100.137500100101.325001100100.925010100100.525011100100.125000100111.325001100100.925010100110.512511100110.125000100101.300001101000.900010101000.500011101000.100000101011.287501101110.912510100110.512511101110.087500101011.287501101010.887510101110.487511101010.087500101011.287501101100.875010101100.47501110100.075000110101.225001110100.837510110110.46251111010.037500110011.225001110010.825010110010.437511110010.025000110011.225001110010.825010110100.42501111010.025000110111.225001110100.825010110100.42501111010.025000110101.20000111100 </td <td>0001011</td> <td>1.4125</td> <td>0101011</td> <td>1.0125</td> <td>1001011</td> <td>0.6125</td> <td>1101011</td> <td>0.2125</td>                                                                                      | 0001011   | 1.4125                                              | 0101011   | 1.0125  | 1001011   | 0.6125  | 1101011   | 0.2125  |  |
| 00011101.375001011100.975010011100.575011011100.175000011111.362501011110.962510011110.562511011110.162500100001.350001100000.950010100000.550011100000.150000100111.337501100110.937510100110.537511100110.137500100101.325001100100.925010100100.525011100100.125000100111.325001100110.912510100110.512511100110.125000100111.325001100110.912510100110.500011101000.100000100111.325001101010.925010101010.500011101010.125000101011.300001101000.900010101000.500011101010.125000101011.287501101110.887510101110.48751110110.087500101101.275001101110.875010101110.46251110110.067500110011.237501110110.837510110110.437511110010.037500110101.225001110100.82501011010.42501111010.025000110111.22500111010.82551011010.42501111010.025000110111.225001110100.80001011000.40001111000.025000110111.21550111011<                                                                                                                                                                                                                                  | 0001100   | 1.4000                                              | 0101100   | 1.0000  | 1001100   | 0.6000  | 1101100   | 0.2000  |  |
| 0001111     1.3625     0101111     0.9625     1001111     0.5625     1101111     0.1625       0010000     1.3500     0110000     0.9500     1010000     0.5500     1110000     0.1500       0010001     1.3375     0110010     0.9375     1010010     0.5375     1110010     0.1375       0010010     1.3250     0110010     0.9250     1010010     0.5250     1110010     0.1250       0010011     1.3250     0110011     0.9125     1010011     0.5125     1110010     0.1250       0010010     1.3000     0110100     0.9000     1010100     0.5000     111010     0.1250       0010101     1.2875     0110101     0.8875     101001     0.4875     111010     0.08750       0010111     1.2875     0110111     0.8875     101011     0.4625     111011     0.0750       0010101     1.2750     0111010     0.8750     101101     0.4750     1111010     0.0750       0011001     1.2500     0111000     0.8750                                                                                                                                        | 0001101   | 1.3875                                              | 0101101   | 0.9875  | 1001101   | 0.5875  | 1101101   | 0.1875  |  |
| 00100001.350001100000.950010100000.550011100000.150000100011.337501100110.937510100010.537511100010.137500100101.325001100100.925010100100.525011100100.125000100111.312501100110.912510100110.512511100110.112500100011.300001101000.900010101000.500011101000.100000101011.28750110110.88751010110.48751110110.087500101011.275001101010.875010101100.47501110100.075000101111.262501101110.862510101110.46251110110.067500110001.250001110000.850010110000.45001111000.050000110011.225001110110.82501011010.43751110110.025000110101.225001110100.82501011010.43751111010.025000110111.225001110100.82501011010.42501111010.025000110111.225001110100.82501011010.42501111010.025000110111.21250111010.81251011010.42501111010.025000110101.20000111000.80001011000.4000111100OFF00111011.187501111010.7875                                                                                                                                                                                                                                           | 0001110   | 1.3750                                              | 0101110   | 0.9750  | 1001110   | 0.5750  | 1101110   | 0.1750  |  |
| 00100011.337501100010.937510100010.537511100010.137500100101.325001100100.925010100100.525011100100.125000100111.312501100110.912510100110.512511100110.112500101001.300001101000.900010101000.500011101000.100000101011.287501101010.887510101010.487511101010.087500101011.275001101100.875010101100.47501110110.075000101111.262501101110.862510101110.46251110110.067500110001.250001110000.85001011000.437511110010.037500110011.237501110110.82501011010.43751111010.025000110011.225001110100.82501011000.42501111010.025000110111.225001110110.82501011010.42501111010.025000110111.225001110100.82501011010.42501111010.012500110111.212501110110.81251011010.42501111010.012500110101.20000111000.80001011000.4000111100OFF00111011.187501111010.787510111010.38751111101OFF00111101.175001111000.7750 <td>0001111</td> <td>1.3625</td> <td>0101111</td> <td>0.9625</td> <td>1001111</td> <td>0.5625</td> <td>1101111</td> <td>0.1625</td>                                                                                                      | 0001111   | 1.3625                                              | 0101111   | 0.9625  | 1001111   | 0.5625  | 1101111   | 0.1625  |  |
| 00100101.325001100100.925010100100.525011100100.125000100111.312501100110.912510100110.512511100110.112500101001.300001101000.900010101000.500011101000.100000101011.28750110110.88751010110.48751110110.087500101101.275001101100.875010101100.47501110110.075000101111.262501101110.862510101110.46251110110.067500101001.250001110000.85001011000.43751111000.050000110011.237501110010.83751011000.43751111010.037500110101.225001110100.83751011000.43751111010.025000110111.237501110010.83751011000.43751111010.025000110101.225001110100.82501011010.42501111010.025000110111.212501110100.82501011010.42501111010.025000110101.20000111000.80001011000.40001111000.025000111011.21250111010.78751011010.42501111010.012500111001.200001111000.800010111000.40001111000.6F00111011.187501111010.7750 <td< td=""><td>0010000</td><td>1.3500</td><td>0110000</td><td>0.9500</td><td>1010000</td><td>0.5500</td><td>1110000</td><td>0.1500</td></td<>                                                                                                | 0010000   | 1.3500                                              | 0110000   | 0.9500  | 1010000   | 0.5500  | 1110000   | 0.1500  |  |
| 00100111.312501100110.912510100110.512511100110.112500101001.300001101000.900010101000.500011101000.100000101011.287501101010.887510101010.487511101010.087500101101.275001101100.875010101100.475011101100.075000101111.262501101110.862510101110.462511101110.067500101001.250001110000.850010110000.450011110000.050000110011.250001110010.837510110100.437511110010.037500110111.225001110110.825010110100.42501111010.025000110111.212501110110.812510110110.42501111010.025000110111.212501110110.825010110100.42501111010.025000110111.212501110110.812510110110.42501111010.025000110111.212501110110.812510110110.42501111010.012500111001.200001111000.800010111000.4000111100OFF00111011.187501111010.787510111010.38751111101OFF00111101.175001111100.775010111100.3750111110OFF                                                                                                                                                                                                                                                              | 0010001   | 1.3375                                              | 0110001   | 0.9375  | 1010001   | 0.5375  | 1110001   | 0.1375  |  |
| 00101001.300001101000.900010101000.500011101000.100000101011.287501101010.887510101010.487511101010.087500101101.275001101100.875010101100.475011101100.075000101111.262501101110.862510101110.462511101110.06750010001.250001110000.850010110000.450011110000.050000110011.237501110010.837510110010.437511110100.037500110111.225001110100.825010110100.425011110100.025000110111.225001110110.812510110110.412511110110.012500110111.212501110110.800010111000.4000111100OFF00111011.187501111010.787510111010.3875111101OFF00111101.175001111010.775010111010.3750111110OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0010010   | 1.3250                                              | 0110010   | 0.9250  | 1010010   | 0.5250  | 1110010   | 0.1250  |  |
| 0010101     1.2875     0110101     0.8875     1010101     0.4875     1110101     0.0875       0010110     1.2750     0110110     0.8750     1010110     0.4750     1110110     0.0750       0010111     1.2625     0110111     0.8625     1010111     0.4625     1110111     0.0675       0011000     1.2500     0111000     0.8500     1011000     0.4500     1111000     0.0500       0011001     1.2500     0111001     0.8500     1011001     0.4375     1111001     0.0500       0011001     1.2375     0111001     0.8375     1011001     0.4375     1111001     0.0250       0011001     1.2250     0111010     0.8250     1011010     0.4375     111101     0.0250       0011011     1.2250     0111010     0.8250     1011010     0.4250     111101     0.0125       0011011     1.2125     011101     0.8125     101101     0.4125     111101     0.0125       0011100     1.2000     0111100     0.8000                                                                                                                                        | 0010011   | 1.3125                                              | 0110011   | 0.9125  | 1010011   | 0.5125  | 1110011   | 0.1125  |  |
| 00101101.275001101100.875010101100.475011101100.075000101111.262501101110.862510101110.462511101110.067500110001.250001110000.850010110000.450011110000.050000110011.237501110010.837510110010.437511110010.037500110101.225001110100.825010110100.42501111010.025000110111.212501110110.812510110110.412511110110.012500111001.200001111000.800010111000.4000111100OFF00111011.187501111010.787510111010.3875111101OFF00111101.175001111100.775010111100.3750111110OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0010100   | 1.3000                                              | 0110100   | 0.9000  | 1010100   | 0.5000  | 1110100   | 0.1000  |  |
| 00101111.262501101110.862510101110.462511101110.067500110001.250001110000.850010110000.450011110000.050000110011.237501110010.837510110010.437511110010.037500110101.225001110100.825010110100.425011110100.025000110111.212501110110.812510110110.412511110110.012500111001.200001111000.800010111000.4000111100OFF00111011.187501111010.787510111010.3875111101OFF00111101.175001111100.775010111100.3750111110OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0010101   | 1.2875                                              | 0110101   | 0.8875  | 1010101   | 0.4875  | 1110101   | 0.0875  |  |
| 00110001.250001110000.850010110000.450011110000.050000110011.237501110010.837510110010.437511110010.037500110101.225001110100.825010110100.425011110100.025000110111.212501110110.812510110110.412511110110.012500111001.200001111000.800010111000.4000111100OFF00111011.187501111010.787510111010.3875111101OFF00111011.175001111000.775010111000.3750111110OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0010110   | 1.2750                                              | 0110110   | 0.8750  | 1010110   | 0.4750  | 1110110   | 0.0750  |  |
| 00110011.237501110010.837510110010.437511110010.037500110101.225001110100.825010110100.425011110100.025000110111.212501110110.812510110110.412511110110.012500111001.200001111000.800010111000.4000111100OFF00111011.187501111010.787510111010.3875111101OFF00111001.175001111000.775010111000.3750111110OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0010111   | 1.2625                                              | 0110111   | 0.8625  | 1010111   | 0.4625  | 1110111   | 0.0675  |  |
| 0011010     1.2250     0111010     0.8250     1011010     0.4250     1111010     0.0250       0011011     1.2125     0111011     0.8125     1011011     0.4125     1111011     0.0125       0011100     1.2000     0111100     0.8000     1011100     0.4000     111100     OFF       0011101     1.1875     0111101     0.7875     1011101     0.3875     111101     OFF       0011110     1.1750     0111100     0.7750     1011100     0.3750     111110     OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0011000   | 1.2500                                              | 0111000   | 0.8500  | 1011000   | 0.4500  | 1111000   | 0.0500  |  |
| 0011011     1.2125     0111011     0.8125     1011011     0.4125     1111011     0.0125       0011100     1.2000     0111100     0.8000     1011100     0.4000     111100     OFF       0011101     1.1875     0111101     0.7875     1011101     0.3875     111101     OFF       0011110     1.1750     0111110     0.7750     1011110     0.3750     111110     OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0011001   | 1.2375                                              | 0111001   | 0.8375  | 1011001   | 0.4375  | 1111001   | 0.0375  |  |
| 0011100     1.2000     0111100     0.8000     1011100     0.4000     111100     OFF       0011101     1.1875     0111101     0.7875     1011101     0.3875     111101     OFF       0011110     1.1750     0111101     0.7750     1011101     0.3750     111110     OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0011010   | 1.2250                                              | 0111010   | 0.8250  | 1011010   | 0.4250  | 1111010   | 0.0250  |  |
| 0011101     1.1875     0111101     0.7875     1011101     0.3875     111101     OFF       0011110     1.1750     0111110     0.7750     1011110     0.3750     111110     OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0011011   | 1.2125                                              | 0111011   | 0.8125  | 1011011   | 0.4125  | 1111011   | 0.0125  |  |
| 0011110 1.1750 0111110 0.7750 1011110 0.3750 1111110 OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0011100   | 1.2000                                              | 0111100   | 0.8000  | 1011100   | 0.4000  | 1111100   | OFF     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0011101   | 1.1875                                              | 0111101   | 0.7875  | 1011101   | 0.3875  | 1111101   | OFF     |  |
| 0011111 1.1625 0111111 0.7625 1011111 0.3625 1111111 OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0011110   | 1.1750                                              | 0111110   | 0.7750  | 1011110   | 0.3750  | 1111110   | OFF     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0011111   | 1.1625                                              | 0111111   | 0.7625  | 1011111   | 0.3625  | 1111111   | OFF     |  |

Table 1. 7-bit VID Code Table for AM2+ CPU (Serial)



| Table 2. 6-bit VID Code Table for AM2 CPU (Parallel) |         |          |         |          |         |          |         |  |
|------------------------------------------------------|---------|----------|---------|----------|---------|----------|---------|--|
| VID[5:0]                                             | Voltage | VID[5:0] | Voltage | VID[5:0] | Voltage | VID[5:0] | Voltage |  |
| 000000                                               | 1.5500  | 010000   | 1.1500  | 100000   | 0.7625  | 110000   | 0.5625  |  |
| 000001                                               | 1.5250  | 010001   | 1.1250  | 100001   | 0.7500  | 110001   | 0.5500  |  |
| 000010                                               | 1.5000  | 010010   | 1.1000  | 100010   | 0.7375  | 110010   | 0.5375  |  |
| 000011                                               | 1.4750  | 010011   | 1.0750  | 100011   | 0.7250  | 110011   | 0.5250  |  |
| 000100                                               | 1.4500  | 010100   | 1.0500  | 100100   | 0.7125  | 110100   | 0.5125  |  |
| 000101                                               | 1.4250  | 010101   | 1.0250  | 100101   | 0.7000  | 110101   | 0.5000  |  |
| 000110                                               | 1.4000  | 010110   | 1.0000  | 100110   | 0.6875  | 110110   | 0.4875  |  |
| 000111                                               | 1.3750  | 010111   | 0.9750  | 100111   | 0.6750  | 110111   | 0.4750  |  |
| 001000                                               | 1.3500  | 011000   | 0.9500  | 101000   | 0.6625  | 111000   | 0.4625  |  |
| 001001                                               | 1.3250  | 011001   | 0.9250  | 101001   | 0.6500  | 111001   | 0.4500  |  |
| 001010                                               | 1.3000  | 011010   | 0.9000  | 101010   | 0.6375  | 111010   | 0.4375  |  |
| 001011                                               | 1.2750  | 011011   | 0.8750  | 101011   | 0.6250  | 111011   | 0.4250  |  |
| 001100                                               | 1.2500  | 011100   | 0.8500  | 101100   | 0.6125  | 111100   | 0.4125  |  |
| 001101                                               | 1.2250  | 011101   | 0.8250  | 101101   | 0.6000  | 111101   | 0.4000  |  |
| 001110                                               | 1.2000  | 011110   | 0.8000  | 101110   | 0.5875  | 111110   | 0.3875  |  |
| 001111                                               | 1.1750  | 011111   | 0.7750  | 101111   | 0.5750  | 111111   | 0.3750  |  |


Table 2. 6-bit VID Code Table for AM2 CPU (Parallel)

## **Functional Pin Description**

| Pin No.             | Pin Name                 | Pin Function                                                                                                                                                                                       |
|---------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                   | PWROK                    | PWROK Input Signal.                                                                                                                                                                                |
| 2                   | RT                       | Connect this pin to GND by a resistor to adjust frequency.                                                                                                                                         |
| 3                   | FBRTN                    | Remote sense ground for CORE.                                                                                                                                                                      |
| 4                   | FBRTN_NB                 | Remote sense ground for NB.                                                                                                                                                                        |
| 5                   | FB_NB                    | Inverting input of error-amp for NB.                                                                                                                                                               |
| 6                   | COMP_NB                  | Output of error-amp and input of PWM comparator for NB.                                                                                                                                            |
| 7                   | ISP_NB                   | Positive current sense pin of NB                                                                                                                                                                   |
| 8                   | ISN_NB                   | Negative current sense pin of NB                                                                                                                                                                   |
| 9                   | ADJ                      | Connect this pin to GND by a resistor to set load line of VCORE.                                                                                                                                   |
| 10                  | OFS                      | Connect this pin to GND/5VCC by a resistor to set no-load offset voltage of $V_{CORE}$ .                                                                                                           |
| 11                  | COMP                     | Output of error-amp and input of PWM comparator of V <sub>CORE</sub> .                                                                                                                             |
| 12                  | FB                       | Inverting input of error-amp of V <sub>CORE</sub> .                                                                                                                                                |
| 13                  | IMAX_NB                  | Connect this pin to GND by a resistor to set OCP of NB.                                                                                                                                            |
| 14                  | IMAX                     | Connect this pin to GND by a resistor to set OCP of VCORE.                                                                                                                                         |
| 15, 17, 19, 21      | ISN1, ISN2, ISN3, ISN4   | Negative current sense pin of channel 1, 2, 3 and 4.                                                                                                                                               |
| 16, 18, 20, 22      |                          | Positive current sense pin of channel 1, 2, 3 and 4.                                                                                                                                               |
| 23                  | PS                       | Power Saving Mode Selection Pin.                                                                                                                                                                   |
| 24                  | VCC5                     | Output of internal 5V regulator for control circuits power supply.                                                                                                                                 |
| 25.26               |                          | Connect this pin to GND by a ceramic capacitor larger than 1uF.                                                                                                                                    |
| 25,26               | PWM4, PWM3               | PWM output for channel 4 and channel 3.                                                                                                                                                            |
| 27, 35, 36          | BOOT2, BOOT1, BOOT_NB    | Bootstrap supply for channel 2 and channel 1 and NB.                                                                                                                                               |
| 28, 34, 37          | UGATE2, UGATE1, UGATE_NB | Upper gate driver for channel 2 and channel 1 and NB.                                                                                                                                              |
| 29, 33, 38          | PHASE2, PHASE1, PHASE_NB | Switching node of channel 2 and channel 1 and NB.                                                                                                                                                  |
| 30, 32, 39          | LGATE2, LGATE1, LGATE_NB | Lower gate driver for channel 2 and channel 1 and NB.                                                                                                                                              |
| 31, 40              | VCC12, VCC12_NB          | IC power supply. Connect this pin to 12V.                                                                                                                                                          |
| 41                  | VID0/VFIXEN              | PVI Mode : Used as voltage identification input for DAC.                                                                                                                                           |
| 42                  | VID1/PVI                 | SVI Mode : Functions as VFIXEN selection input.<br>This pin selects PVI/SVI mode based on the state of this pin<br>prior to EN signal.<br>PVI Mode : Used as voltage identification input for DAC. |
| 43                  | VID2/SVD                 | PVI Mode : Used as voltage identification input for DAC.<br>SVI Mode : Serial data input.                                                                                                          |
| 44                  | VID3/SVC                 | PVI Mode : Used as voltage identification input for DAC.<br>SVI Mode : Serial clock input.                                                                                                         |
| 45, 46              | VID4, VID5               | PVI Mode : Used as voltage identification input for DAC.                                                                                                                                           |
| 47                  | PGOOD                    | Power Good Indicator (open drain).                                                                                                                                                                 |
| 48                  | EN                       | Enable Input Signal.                                                                                                                                                                               |
| Exposed pad<br>(49) | GND                      | Reference Ground for the IC. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.                                                                   |



### **Function Block Diagram**



# **RT8855**

## Absolute Maximum Ratings (Note 1)

| Supply Input Voltage BOOTx to PHASEx           |                |
|------------------------------------------------|----------------|
| BOOTx to GND                                   |                |
| DC                                             |                |
| <200ns                                         | –0.3V to 42V   |
| PHASEx to GND                                  |                |
| DC                                             | –2V to 15V     |
| <200ns                                         | 5V to 30V      |
| Input/Output Voltage or I/O Voltage            | 0.3V to 7V     |
| • Power Dissipation, $P_D @ T_A = 25^{\circ}C$ |                |
| WQFN-48L7x7                                    | 3.226W         |
| Package Thermal Resistance (Note 2)            |                |
| WQFN-48L 7x7, θ <sub>JA</sub>                  | 31°C/W         |
| Junction Temperature                           |                |
| Lead Temperature (Soldering, 10 sec.)          |                |
| Storage Temperature Range                      | –65°C to 150°C |
| ESD Susceptibility (Note 3)                    |                |
| HBM (Human Body Mode)                          | 2kV            |
| MM (Machine Mode)                              | 200V           |

## Recommended Operating Conditions (Note 4)

| Supply Voltage, VCC12      | $12V \pm 10\%$ |
|----------------------------|----------------|
| Junction Temperature Range | –40°C to 125°C |
| Ambient Temperature Range  | 0°C to 70°C    |

### **Electrical Characteristics**

(VCC12 = 12V, GND = 0V,  $T_A = 25^{\circ}C$ , unless otherwise specified)

| Parameter                   | Symbol                | Test Conditions           | Min  | Тур | Max  | Unit |
|-----------------------------|-----------------------|---------------------------|------|-----|------|------|
| VCC Supply Input            |                       |                           |      |     |      |      |
| VCC12 Supply Voltage        | V <sub>VCC12</sub>    |                           | 10.8 | 12  | 13.2 | V    |
| VCC12 Supply Current        | I <sub>VCC12</sub>    |                           |      | 10  |      | mA   |
| VCC12_NB Supply Voltage     | VVCC12_NB             |                           | 10.8 | 12  | 13.2 | V    |
| VCC12_NB Supply Current     | I <sub>VCC12_NB</sub> |                           |      | 5   |      | mA   |
| VCC5 Power                  | ·                     |                           |      |     | •    |      |
| VCC5 Supply Voltage         | V <sub>VCC5</sub>     | $I_{LOAD} = 10 \text{mA}$ | 4.9  | 5   | 5.1  | V    |
| VCC5 Output Sourcing        | I <sub>VCC5</sub>     |                           | 10   |     |      | mA   |
| Power-On Reset              | ·                     |                           |      |     |      |      |
| VCC12 Rising Threshold      | V <sub>VCC12TH</sub>  | VCC12 Rising              | 9.2  | 9.6 | 10   | V    |
| VCC12 Hysteresis            | VVCC12HY              | VCC12 Falling             |      | 0.9 |      | V    |
| Input Threshold             | ·                     |                           | -    |     |      |      |
| Enable Input High Threshold | V <sub>ENHI</sub>     | EN Rising                 | 2    |     |      | V    |
| Enable Input Low Threshold  | V <sub>ENLO</sub>     | EN Falling                |      |     | 0.8  | V    |

To be continued

# **RT8855**



| Parameter                         | Symbol                   | Test Conditions                                  | Min            | Тур            | Мах            | Unit  |
|-----------------------------------|--------------------------|--------------------------------------------------|----------------|----------------|----------------|-------|
| PWROK Input High Threshold        | Vрокні                   | PWROK Rising                                     | 2              |                |                | V     |
| PWROK Input Low Threshold         | V <sub>POKLO</sub>       | PWROK Falling                                    |                |                | 0.8            | V     |
| VID5 to VID0 Rising Threshold     | V <sub>VID5 to 0</sub>   | VID5 to VID0 Rising                              | 0.75           | 0.8            | 0.85           | V     |
| VID5 to VID0 Hysteresis           | V VID5 to 0 HYS          | VID5 to VID0 Falling                             |                | 25             |                | mV    |
| VID5 to VID0 Pull-Down<br>Current | I <sub>VID5 to 0</sub>   | V <sub>VID5 to 0</sub> = 1.5V                    |                | 16             | 30             | uA    |
| Reference Voltage accuracy        |                          |                                                  |                |                | 1              | r     |
|                                   |                          | 1V to 1.55V                                      | -0.5           |                | +0.5           | %     |
| DAC Accuracy                      |                          | 0.8V to 1V                                       | -8             |                | +8             | mV    |
|                                   |                          | 0.5V to 0.8V                                     | -10            |                | +10            | mV    |
| Error Amplifier                   |                          |                                                  |                |                |                |       |
| DC Gain                           | A <sub>DC</sub>          | No Load                                          |                | 80             |                | dB    |
| Gain-Bandwidth                    | GBW                      | $C_{LOAD} = 10 pF$                               |                | 10             |                | MHz   |
| Slew Rate                         | SR                       | C <sub>LOAD</sub> = 10pF                         | 10             |                |                | V/us  |
| Output Voltage Range              | V <sub>COMP</sub>        | $R_{LOAD} = 47 k\Omega$                          | 0.5            |                | 3.6            | V     |
| Power Good                        | ·                        |                                                  | •              |                |                |       |
| Over-Voltage Threshold            | V <sub>PGOOD-OV</sub>    | FB Rising                                        | VDAC<br>+210mV | VDAC<br>+240mV | VDAC<br>+270mV | V     |
| Under-Voltage Threshold           | V <sub>PGOOD-UV</sub>    | FB Falling                                       | VDAC<br>-330mV | VDAC<br>-300mV | VDAC<br>-270mV | V     |
| Over-Voltage Threshold_NB         | V <sub>PGOOD-OV_NB</sub> | FB_NB Rising                                     | VDAC<br>+210mV | VDAC           | VDAC           | V     |
| Under-Voltage Threshold_NB        | Vpgood-uv_nb             | FB_NB Falling                                    | VDAC<br>-330mV | VDAC<br>-300mV | VDAC<br>-270mV | V     |
| Power Good Low Voltage            | V <sub>PGOOD</sub>       | I <sub>PGOOD</sub> = 4mA                         |                |                | 0.4            | V     |
| Current Sense Amplifier           |                          |                                                  |                | 1              | 1              |       |
| Max Current                       | I <sub>GMMAX</sub>       | V <sub>CSP</sub> = 1.3V<br>Sink Current from CSN | 100            |                |                | uA    |
| Input Offset Voltage              | Voscs                    |                                                  | -2             | 0              | +2             | mV    |
| Oscillator                        |                          | 1                                                | _              |                |                |       |
| Running Frequency                 | fosc                     | $R_{RT} = 40 k\Omega$                            | 270            | 300            | 330            | kHz   |
| Ramp Amplitude                    | V <sub>RAMP</sub>        |                                                  |                | 1.6            |                | V     |
| Soft Start                        |                          |                                                  | •              | •              | •              |       |
| Soft Start Slew Rate              | SR <sub>SS</sub>         | Slew Rate                                        | 2.5            | 3.25           | 4              | mV/us |
| VID change Slew Rate              | SR <sub>VID</sub>        | Slew Rate                                        | 2.5            | 3.25           | 4              | mV/us |
| Protection                        | 1                        | ,                                                |                |                |                |       |
|                                   | V <sub>OVP</sub>         | Sweep FB Voltage                                 | 1.7            | 1.8            | 1.9            | V     |
| Over-Voltage Threshold            | V <sub>OVP_NB</sub>      | Sweep FB_NB Voltage                              | 1.7            | 1.8            | 1.9            | V     |

To be continued

| Parameter               | Symbol               | Test Conditions                           | Min  | Тур | Max  | Unit |
|-------------------------|----------------------|-------------------------------------------|------|-----|------|------|
|                         | I <sub>OCP</sub>     | $R_{IMAX} = 40 k\Omega$                   | 68   | 80  | 92   | uA   |
| Over-Current Threshold  | VIMAX                | $R_{IMAX} = 40 k\Omega$                   | 1.44 | 1.6 | 1.76 | V    |
| Over-Curient Infestiola | I <sub>OCP_NB</sub>  | $R_{IMAX_NB} = 40 k\Omega$                | 68   | 80  | 92   | uA   |
|                         | V <sub>IMAX_NB</sub> | $R_{IMAX_NB} = 40k\Omega$                 | 1.44 | 1.6 | 1.76 | V    |
| Gate Driver             |                      |                                           |      |     |      |      |
| UGATE Drive Source      | R <sub>UGATEsr</sub> | BOOT – PHASE = 8V<br>250mA Source Current |      | 1   |      | Ω    |
| UGATE Drive Sink        | R <sub>UGATEsk</sub> | BOOT – PHASE = 8V<br>250mA Sink Current   |      | 1   |      | Ω    |
| LGATE Drive Source      | R <sub>LGATEsr</sub> | V <sub>LGATE</sub> = 8V                   |      | 1   |      | Ω    |
| LGATE Drive Sink        | R <sub>LGATEsk</sub> | 250mA Sink Current                        |      | 0.9 |      | Ω    |

**Note 1.** Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.

- Note 2.  $\theta_{JA}$  is measured in the natural convection at  $T_A = 25^{\circ}C$  on a effective single layer thermal conductivity test board of JEDEC thermal measurement standard.
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.

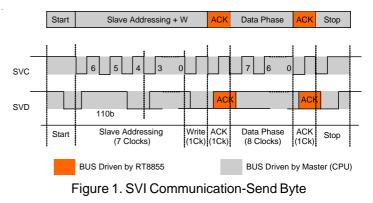
## **Application Information**

The RT8855 is a dual output PWM controller supports hybrid power control of AMD processors which operate from either a 6-bit parallel VID interface (PVI) or a serial VID interface (SVI). One of the outputs is a 4/3/2/1-phase PWM controller with two integrated MOSFET drivers to support CPU core voltage (VDD) and another is a singlephase buck controller with an integrated MOSFET driver to power North-Bridge (NB) chipset (VDDNB) in SVI mode. In PVI mode, only multiphase PWM controller is active for single-plane VDD only processor.

Richtek's proprietary Burst Transient Response(BTR<sup>TM</sup>), provides fastest initial response to high di/dt load transients and less bulk and ceramic output capacitance is required to meet transient regulation specifications. The RT8855 incorporates differential voltage sensing, continuous inductor DCR phase current sensing, programmable loadline voltage positioning and offset voltage to provide high accuracy regulated power for both VDD and VDDNB. While VDDNB is enabled in SVI mode, it will be automatically phase-shifted with respect to the CPU Core phases in order to reduce the total input RMS current amount.

### CPU\_TYPE Detection and System Start-Up

At system Start-up, on the rising-edge of EN signal, RT8855 monitors the status of VID1 and latches the PVI mode (VID1 = 1) or SVI mode (VID1 = 0).


### **PVI Mode**

PVI is a 6-bit-wide parallel interface used to address the CPU Core section reference. According to the selected code, the device sets the Core section reference and regulates its output voltage according to Table 2. In this mode, NB section is kept in high impedance. Furthermore, PWROK information is ignored as well since the signal only applies to the SVI protocol.

### SVI Mode

SVI is a two wire, Clock and Data, bus that connect a single master (CPU) to one slave (RT8855). The master initiates and terminates SVI transactions and drives the clock, SVC, and the data, SVD, during a transaction. The slave receives the SVI transactions and acts accordingly. SVI wire protocol is based on fast-mode I2C as shown in

Figure 1. SVI interface also consider two additional signals needed to manage the system start-up. These signals are EN and PWROK. The device asserts a PGOOD signal if the output voltages are in regulation.



### Set VID Command

The Set VID Command is defined as the command sequence that the CPU issues on the SVI bus to modify the voltage level of the Core section and NB section, as shown is Figure 1. During a Set VID Command, the processor sends the start (Start) sequence followed by the address of the Section which the Set VID Command applies. The processor then sends the write (WRITE) bit. After the write bit, The Voltage Regulator (VR) sends the acknowledge (ACK) bit. The processor then sends the VID bits code during the data phase. The VR sends the vID bits code during the data phase. The VR sends the processor sends the stop (Stop) sequence. After the VR has detected the stop, it performs an On-the-Fly VID transition for the addressed section(s). Refer to Table 3 for the details of SVI send byte.

RT8855 is able to manage individual power off for both VCORE and NB sections. The CPU may issue a serial VID command to power off or power on one section while the other one remains powered. In this case, the PGOOD signal remains asserted.

### Table 3. SVI Send Byte-Address and Data Phase

| Description / | / Example |
|---------------|-----------|
|---------------|-----------|

| bits   | Description                                      |
|--------|--------------------------------------------------|
| Addre  | ess Phase                                        |
| 6:4    | Always 110b                                      |
| 3      | Not Applicable, ignored.                         |
| 2      | Not Applicable, ignored.                         |
|        | CORE Section. (Note)                             |
| 1      | If set then the following data byte contains the |
|        | VID code for CORE Section.                       |
|        | NB Section. (Note)                               |
| 0      | If set then the following data byte contains the |
|        | VID code for NB Section.                         |
| Data I | Phase                                            |
| 7      | PSI_L Flag (Active Low). When asserted, the      |
| '      | VR is allowed to enter Power-Saving Mode.        |
| 6:0    | VID Code.                                        |

Note : Assertion in both bit 1 and 0 will address the VID code to both CORE and NB simultaneously.

Example :

| SVI Address<br>Bits [6 : 0] | Description                        |
|-----------------------------|------------------------------------|
| 1100_000                    | Should be ignored.                 |
| 1100_001                    | Set VID on VDDNB.                  |
| 1100_110                    | Set VID on VDD0 and VDD1.          |
| 1100_100                    | Set VID on VDD1.                   |
| 1100_010                    | Set VID on VDD0 or VDD (uniplane). |
| 1100_111                    | Set VID on VDDNB, VDD0 and VDD1.   |

#### **PWROK De-assertion**

PWROK stays low after EN signal is asserted, and the controller regulates all the planes according to the Pre-PWROK Metal VID.

PGOOD is de-asserted as long as Pre-PWROK Metal VID voltage is out of the initial voltage specifications.

### **V\_FIX Mode Function**

Anytime the pin VID0/VFIXEN is pulled high, the controller enters V-FIX mode. When in V\_FIX mode, both VCORE and NB section voltages are governed by the information shown in Table 4. Regardless of the state of PWROK, the device will work in SVI mode. SVC and SVD are considered as static VID and the output voltage will be changed according to their status. Dynamic SVC/SVD-change management is provided in this condition. V\_FIX mode is intended for system debug only.

| Table 4. V_FIX M | lode and Pre-PWROK Meta | VID |
|------------------|-------------------------|-----|
|------------------|-------------------------|-----|

|     | SVD | Output Voltage (V) |            |  |
|-----|-----|--------------------|------------|--|
| SVC |     | Pre-PWROK          |            |  |
|     |     | Metal VID          | V_FIX Mode |  |
| 0   | 0   | 1.1V               | 1.4V       |  |
| 0   | 1   | 1.0V               | 1.2V       |  |
| 1   | 0   | 0.9V               | 1.0V       |  |
| 1   | 1   | 0.8V               | 0.8V       |  |

#### **Power Ready Detection**

During start-up, RT8855 will detect VCC12, VCC5 and EN signal. Figure 2 shows the power ready detection circuit. When VCC12 > 9.6V and VCC5 > 4.6V, POR (Power On Reset) will go high. POR is the internal signal to indicate all input powers are ready to let RT8855 and the companioned MOSFET drivers to work properly. When POR = L, RT8855 will turn off both high side and low side MOSFETs.

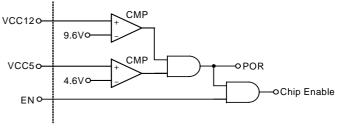
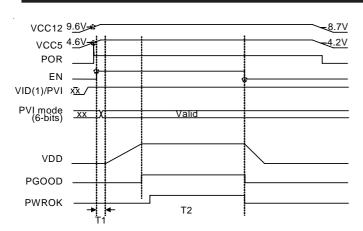




Figure 2. Circuit for Power Ready Detection

### **Power-Up Sequencing**

Figure 3 and 4 are the power-up sequencing diagram of RT8855. Once power\_on\_reset is valid (POR = H), on the rising edge of the EN signal, the RT8855 detects the VID1 pin and determine to operate either in SVI or PVI mode. Figure3 shows the PVI-mode power sequence, the controller stays in T1 state waiting for valid parallel VID code sent by CPU. After receiving valid parallel VID code, VCORE continues ramping up to the specified voltage according to the VID code in T2 state. Figure 4 shows the SVI-mode power sequence, the controller samples the two serial VID pins, SVC and SVD. Then, the controller stores this value as the boot VID that is the so-called "Pre-PWROK Metal VID" in T1 state. After the processor starts with boot VID voltages, PWROK is asserted and the processor initializes the serial VID interface in T2 state. The processor uses the serial VID interface to issue VID commands to move the power planes from the boot VID values to the dual power planes in T3 state.

# **RT8855**



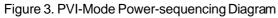





Figure 4. SVI-Mode Power-sequencing Diagram

### **CORE Section- Output Current Sensing**

The RT8855 provides a low input offset current-sense amplifier (CSA) to monitor the continuous output current of each phase for V<sub>CORE</sub>. Output current of CSA (I<sub>X</sub>[n]) is used for current balance and active voltage position as shown in Figure 5. In this inductor current sensing topology, R<sub>S</sub> and C<sub>S</sub> must be set according to the equation below :

$$\frac{L}{DCR} = Rs \times Cs$$

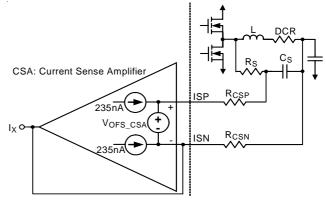
Then the output current of CSA will follow the equation below :

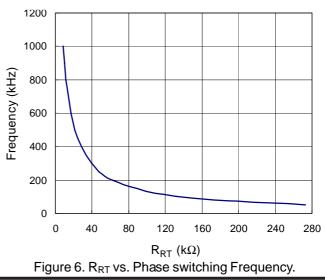
 $I_{X} = \frac{[I_{L} \times DCR - V_{OFS-CSA} + 235nA \times (R_{CSP} - R_{CSN})]}{R_{CSN}}$ 

235nA is the typical value of the CSA input offset current.  $V_{OFS-CSA}$  is the input offset. Usually, " $V_{OFS-CSA}$  + 235nA x  $(R_{CSP} - R_{CSN})$ " is negligible except at very light load and the equation can be simplified as the equation below :

$$I_X = \frac{I_L \times DCR}{R_{CSN}}$$

www.richtek.com 12





Figure 5. Current Sensing Circuit.

#### **CORE Section- Phase Detection**

The number of the operational phases is determined by the internal circuitry that monitors the ISNx voltages during start up. Normally, the RT8855 operates as a 4-phase PWM controller. Pull ISN4 and ISP4 to 5VCC programs 3-phase operation, pull ISN3 and ISP3 to 5VCC programs 2-phase operation, and pull ISN2 and ISP2 to 5VCC programs 1-phase operation. RT8855 detects the voltage of ISN4, ISN3 and ISN2 at rising edge of POR. At the rising edge, RT8855 detects whether the voltage of ISN4, ISN3 and ISN2 are higher than "VCC5-1V" respectively to decide how many phases should be active. Phase detection is only active during start up. Once POR = high, the number of operational phases is determined and latched.

#### **CORE Section-Switching Frequency**

Connect a resistor ( $R_T$ ) from the RT pin to GND can program the switching frequency of each phase. Figure 6 shows the relationship between the resistance and switching frequency.



## RICHTEK

#### **CORE Section- Differential Output Voltage Sensing**

The RT8855 uses differential voltage sensing by a high gain low offset ErrorAmp as shown in Figure 7. Connect the negative on-die CPU remote sense pin to FBRTN. Connect the positive on-die remote sense pin to FB with a resistor (R<sub>FB</sub>) The ErrorAmp compares EAP ( $= V_{DAC} - V_{ADJ}$ ) with the V<sub>FB</sub> to regulate the output voltage.

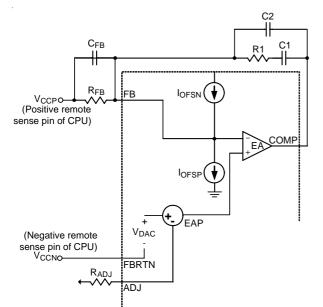



Figure 7. Circuit for VCORE Differential Sensing and No load Offest.

### **CORE Section- No-Load Offset**

In Figure 7,  $I_{OFSP}$  and  $I_{OFSN}$  are used to generate no-load offset. Either  $I_{OFSP}$  or  $I_{OFSN}$  is active during normal operation. Connect a resistor from OFS pin to GND to activate  $I_{OFSN}$ .  $I_{OFSN}$  flows through  $R_{FB}$  from FB pin to  $V_{CCP}$ . In this case, negative no-load offset voltage ( $V_{OFSN}$ ) is generated.

Connect a resistor from OFS pin to 5VCC to activate  $I_{OFSP}$ .  $I_{OFSP}$  flows through  $R_{FB}$  from the  $V_{CCP}$  to FB pin. In this case, positive no-load offset voltage ( $V_{OFSP}$ ) is generated.

Beside  $I_{OFSN}$  and  $I_{OFSP}$ , the RT8855 generates another DC current for initial no-load negative offset. A DC current source will continuously inject typical 9uA current into the resistors connected to ADJ pin, Therefore, the effect of this 9uA current source and ADJ resistors should counted into the calculation of no-load offset :

$$V_{OFSN} = I_{OFSN} \times R_{FB} + 9u \times R_{ADJ}$$
$$= 0.4 \times \frac{R_{FB}}{R_{OFS}} + 9u \times R_{ADJ}$$

 $V_{OFSP} = I_{OFSP} \times R_{FB} - 9u \times R_{ADJ}$  $= 0.4 \times \frac{R_{FB}}{R_{OFS}} - 9u \times R_{ADJ}$ 

### CORE Section- Programmable Load-line

Output current of CSA is summed and averaged in RT8855. Then 0.5 $\Sigma$  (I<sub>X</sub>[n]) is sent to ADJ pin. Because  $\Sigma$  I<sub>X</sub>[n] is a PTC (Positive Temperature Coefficient) current, an NTC (Negative Temperature Coefficient) resistor is needed to connect ADJ pin to GND. If the NTC resistor is properly selected to compensate the temperature coefficient of I<sub>X</sub>[n], the voltage on ADJ pin will be proportional to I<sub>OUT</sub> without temperature effect. In RT8855, the positive input of ErrorAmp is "V<sub>DAC</sub> – V<sub>ADJ</sub>". V<sub>OUT</sub> will follow "V<sub>DAC</sub> – V<sub>ADJ</sub>", too. Thus, the output voltage decreasing linearly with I<sub>OUT</sub> is obtained. The loadline is defined as :

$$LL(loadline) = \frac{\Delta V_{OUT}}{\Delta l_{OUT}} = \frac{\Delta V_{ADJ}}{\Delta l_{OUT}} = \frac{1}{2} \times DCR \times \frac{R_{ADJ}}{R_{CSN}}$$

Briefly, the resistance of  $R_{ADJ}$  sets the resistance of loadline. The temperature coefficient of  $R_{ADJ}$  compensates the temperature effect of loadline.

#### **CORE Section- Load Transient Quick Response**

In steady state, the voltage of V<sub>FB</sub> is controlled to be very close to VEAP. While a load step transient from light load to heavy load could cause VFB lower than VEAP by several tens of mV. In prior design, owing to limited control bandwidth, controller is hard to prevent VOUT undershoot during quick load transient from light load to heavy load. RT8855 buit in proprietary Burst Transient Response (BTR<sup>™</sup>) technology, that detects load transient by comparing V<sub>FB</sub> and V<sub>EAP</sub>. If V<sub>FB</sub> suddenly drops below " $V_{EAP} - V_{OR}$ ",  $V_{QR}$  is a predetermined voltage. The quick response indicator QR rises up. When QR = high, RT8855 turns on all high side MOSFETs and turn off all low side MOSFETs. The sensitivity of quick response can be adjusted by the values of CFB and RFB. Smaller RFB and/ or larger C<sub>FB</sub> will make QR easier to be trigger. Figure8 is the circuit and typical waveforms.

# **RT8855**

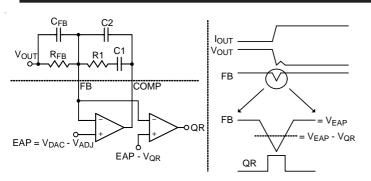



Figure 8. Load Transient Quick Response

### **CORE Section- Current Balance**

In Figure9,  $I_X[n]$  is the current signal which is proportional to the current flowing through channel n. The current error signals  $I_{ERR}[n]$  (=  $I_X[n] - AVG(I_X[n])$ ) are used to raise or lower the valley of internal sawtooth waveforms (EAMP[1] to RAMP[n]) which are compared with ErrorAmp output (COMP) to generate PWM signal. To raise the vally of sawtooth waveform will decrease the PWM duty of the corresponding channel while to lower the sawtooth waveform valley will increase the PWM duty. Eventually, current flowing through each channel will be balanced.

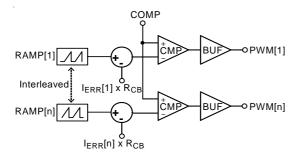



Figure 9. Circuit Channel Current Balance

### CORE Section- Phase Current Adjustment

If phase current is not balanced due to asymmetric PCB layout of power stage, external resistors can be adjusted to correct current imbalance. Figure10 shows two types of current imbalance, constant ratio type and constant difference type. If the initial current distribution is constant ratio type, according to Equation (3), reducing  $R_{CSN}$ [1] can reduce  $I_L$ [1] and improve current balance. If the initial current distribution is the constant difference type, according to Equation (2), increasing  $R_{CSP}$ [1] can reduce  $I_L$ [1] and improve current balance.

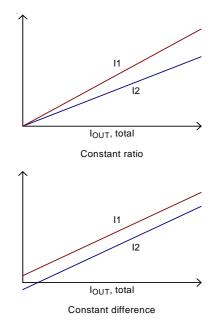



Figure 10. Category of Phase Current Imbalance

### CORE Section-Over Current Protection (OCP)

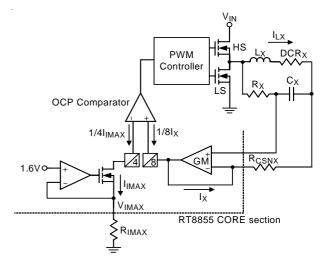



Figure 11. Over Current Protection for CORE section.

CORE section uses an external resistor  $R_{IMAX}$  connected to IMAX pin to generate a reference current  $I_{MAX}$  for over current protection as depicted in Figure 11.

$$I_{IMAX} = \frac{V_{IMAX}}{R_{IMAX}}$$

where  $V_{IMAX}$  is typical 1.6V. RT8855 senses each phase current  $I_X$  and OCP comparator compares sensed average current with the reference current. Equivalently, the maximum phase average current  $I_{LX(MAX)}$  is calculated as below :



# RT8855

 $\frac{1}{4} \times I_{IMAX} = \frac{1}{8} \times I_{X(MAX)}$   $I_{X(MAX)} = 2 \times I_{IMAX} = 2 \times \frac{V_{IMAX}}{R_{IMAX}}$   $I_{LX(MAX)} = I_{X(MAX)} \times \frac{R_{CSNX}}{DCR_X} = 2 \times \frac{V_{IMAX}}{R_{IMAX}} \times \frac{R_{CSNX}}{DCR_X}$ 

Once  $I_X$  is larger than 2 x  $I_{IMAX}$ , OCP of CORE section is triggered and latched. Then, RT8855 will turn off both high side MOSFET and low side MOSFET of all channels. A 100us delay is used in OCP detection circuit to prevent false trigger.

Except the normal OCP function described above, there is another short-circuit-OCP function especially designed for short circuit protection. Since short circuit may cause catastrophic damage over a very short period, this shortcircuit-OCP should have a very short delay for triggering OCP latch. Also to prevent false trigger, the trigger level of short-circuit-OCP is designed 1.5 times of normal OCP level. Hence, the equation of short-circuit-OCP is :

 $I_{LX(MAX), \text{ short}} = 1.5 \text{ x } I_{LX(MAX)} = 3 \times \frac{V_{IMAX}}{R_{IMAX}} \times \frac{R_{CSNX}}{DCR_X},$ 

and the delay of short-curcuit-OCP is 20us. when shortcircuit-OCP is triggered, the RT8855 will turn off both high side MOSFET and low side MOSFET of all channels.

### **CORE Section- Over Voltage Protection (OVP)**

The over voltage protection monitors the output voltage via the FB pin. Once  $V_{FB}$  exceeds 1.8V, OVP is triggered and latched for VCORE section. RT8855 will try to turn on each low side MOSFET and turn off each high side MOSFET to protect CPU.

### **NB Section- Output Current Sensing**

The RT8855 provides low input offset current-sense amplifier (CSA) to monitor the continuous output current of NB scetion. Output current of CSA ( $I_{X_NB}$ ) is used for over current detection as shown in Figure 12. In this inductor current sensing topology,  $R_{S_NB}$  and  $C_{S_NB}$  must be set according to the equation below :

 $\frac{L_{NB}}{DCR_{NB}} = R_{S\_NB} \times C_{S\_NB}$ 

Then the output current of CSA will follow the equation below :

 $I_{X\_NB} = \frac{I_{L\_NB} \times DCR_{NB}}{R_{CSN\_NB}}$ 

DS8855-01 April 2011

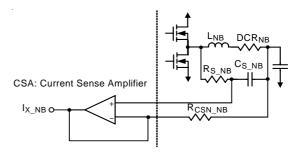



Figure 12. Current Sensing Circuit for NB Section

### **NB Section- Over Current Protection (OCP)**

NB section uses an external resistor  $R_{IMAX\_NB}$  connected to IMAX\_NB pin to generate a reference current  $I_{MAX\_NB}$  for over current protection as depicted in Figure 13.

$$I_{\text{IMAX}_{\text{NB}}} = \frac{V_{\text{IMAX}_{\text{NB}}}}{R_{\text{IMAX}_{\text{NB}}}}$$

where  $V_{IMAX\_NB}$  is typical 1.6V. OCP comparator compares the sensed phase current  $I_{X\_NB}$  with the reference current. Equivalently, the maximum phase NB current  $I_{LX\_NB(MAX)}$  is calculated as below :

$$\begin{split} \frac{1}{4} \times I_{IMAX\_NB} &= \frac{1}{8} \times I_{X\_NB} \\ I_{X\_NB} &= 2 \times I_{IMAX\_NB} = 2 \times \frac{V_{IMAX\_NB}}{R_{IMAX\_NB}} \\ I_{LX\_NB(MAX)} &= I_{X\_NB} \times \frac{R_{CSN\_NB}}{DCR_{NB}} \\ &= 2 \times \frac{V_{IMAX\_NB}}{R_{IMAX\_NB}} \times \frac{R_{CSN\_NB}}{DCR_{NB}} \end{split}$$

Once  $I_{X_NB}$  is larger than 2 x  $I_{IMAX_NB}$ , OCP of NB section is triggered and latched. Then, RT8855 will turn off both high side MOSFET and low side MOSFET of NB section. A 100us delay is used in OCP detection circuit to prevent false trigger.

Except the normal OCP function described above, there is another short-circuit-OCP function especially designed for short circuit protection. Since short circuit may cause catastrophic damage over a very short period, this shortcircuit-OCP should have a very short delay for triggering OCP latch. Also to prevent false trigger, the trigger level of short-circuit-OCP is designed 1.5 times of normal OCP level of NB section. Hence, the equation of NB section short-circuit-OCP is :

 $I_{LX_NB(MAX), short} = 1.5 \times I_{LX_NB(MAX)}$ 

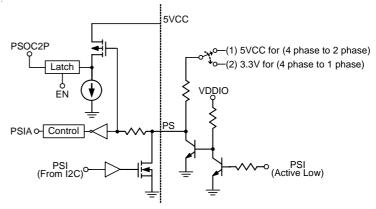
 $= 3 \times \frac{V_{IMAX\_NB}}{R_{IMAX\_NB}} \times \frac{R_{CSN\_NB}}{DCR_{NB}},$ 



and the delay of short-curcuit-OCP of NB section is 20us. When short-circuit-OCP is triggered at NB section, the RT8855 will turn off both high side MOSFET and low side MOSFET of NB section.



Figure 13. Over Current Protection for NB section.


### NB Section- Over Voltage Protection (OVP)

The over voltage protection monitors the output voltage via the FB\_NB pin. Once  $V_{FB_NB}$  exceeds 1.8V, OVP is triggered and latched for NB section. RT8855 will try to turn on low side MOSFET and turn off high side MOSFET to protect NB.

### **Power Saving Indicator (PSI)**

This is an active-low flag that can be set by the CPU to allow the regulator to enter Power-Saving mode to maximize the system efficiency when in light-load conditions. The status of the flag is communicated to the controller through either the SVI bus or PS pin. RT8855 monitors the PS pin to define the PSI strategy that is the action performed by the controller when PSI is asserted.

According Figure 14, by programming different voltage on PS pin, it configures the controller to operate in one or two phases condition when PSI is asserted. Pulling-up PS pin to 3.3V through a resistor, the controller operates in only 1 phase configuration. If the 3.3V is changed to 5V, RT8855 operates in 2 phase configuration. When PSI is de-asserted, the controller will return to the original configuration. The PSI strategy is summarized as shown in Table 5.



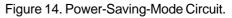



Table 5. PSI Strategy

| PS pin          | PSI Strategy                   |  |  |
|-----------------|--------------------------------|--|--|
|                 | Phase number is set to 1 while |  |  |
| Pull-Up to 3.3V | PSI is asserted.               |  |  |
|                 | Phase number is set to 2 while |  |  |
| Pull-Up to 5V   | PSI is asserted.               |  |  |

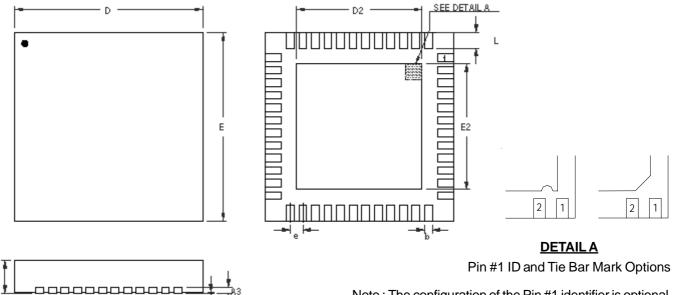
### PCB Layout Guideline

Careful PCB layout is critical to achieve low switching losses and clean, stable operation. The high-power switching power stage requires particular attention. Follow these guidelines for optimum PCB layout.

Place the power components first, that includes power MOSFETs, input and output capacitors, and inductors. It is important to have a symmetrical layout for each power train, preferably with the controller located equidistant from each. Symmetrical layout allows heat to be dissipated equally across all power trains. Great attention should be paid for routing the UGATE, LGATE, and PHASE traces since they drive the power train MOSFETs using short, high current pulses. It is important to size them as large and as short as possible to reduce their overall impedance and inductance. Extra care should be given to the LGATE traces in particular since keeping their impedance and inductance low helps to significantly reduce the possibility of shoot-through.

When placing the MOSFETs try to keep the source of the upper MOSFETs and the drain of the lower MOSFETs and as close as possible. Input Bulk capacitors should be placed close to the drain of the upper MOSFETs and and the source of the lower MOSFETs and .

Locate the output inductors and output capacitors between the MOSFETs and the load. Route high-speed switching nodes away from sensitive analog areas (ISP, ISN, FB, FBRTN, COMP, ADJ, OFS, IMAX.....)


Keep the routing of the bootstrap capacitor short between BOOT and PHASE.

Place the snubber R&C as close as possible to the lower MOSFETs of each phase.

A



## **Outline Dimension**



Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

| Symbol | Dimensions In Millimeters |       | Dimensions In Inches |       |
|--------|---------------------------|-------|----------------------|-------|
|        | Min                       | Max   | Min                  | Мах   |
| А      | 0.700                     | 0.800 | 0.028                | 0.031 |
| A1     | 0.000                     | 0.050 | 0.000                | 0.002 |
| A3     | 0.175                     | 0.250 | 0.007                | 0.010 |
| b      | 0.200                     | 0.300 | 0.008                | 0.012 |
| D      | 6.950                     | 7.050 | 0.274                | 0.278 |
| D2     | 5.050                     | 5.250 | 0.199                | 0.207 |
| E      | 6.950                     | 7.050 | 0.274                | 0.278 |
| E2     | 5.050                     | 5.250 | 0.199                | 0.207 |
| е      | 0.500                     |       | 0.020                |       |
| L      | 0.350                     | 0.450 | 0.014                | 0.018 |

W-Type 48L QFN 7x7 Package

### **Richtek Technology Corporation**

Headquarter 5F, No. 20, Taiyuen Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789 Fax: (8863)5526611

### **Richtek Technology Corporation**

Taipei Office (Marketing) 5F, No. 95, Minchiuan Road, Hsintien City Taipei County, Taiwan, R.O.C. Tel: (8862)86672399 Fax: (8862)86672377 Email: marketing@richtek.com

Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.