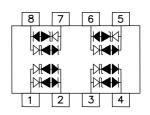


Low Capacitance

SLVU2.8-8

Description

The SLVU2.8-8 is in an SO-08 package and may be used to protect two high-speed line pairs. The "flow-thru" design minimizes trace inductance and reduces voltage overshoot associated with ESD events. The low clamping voltage of the SLVU2.8-8 minimizes the stress on the protected IC.



Feature

- **u** 600 Watts Peak Pulse Power per Line (tp=8/20μs)
- u Protects eight lines (four line Pairs)
- u Low capacitance
- u RoHS Compliant
- u IEC61000-4-2 (ESD) ±15kV (air), ±8kV (contact)
- **u** IEC61000-4-4 (EFT) 40A (5/50ηs)
- **u** IEC61000-4-5 (Lightning) 24A (8/20μs)

Functional Diagram

Applications

- u 10/100/1000 Ethernet
- u WAN/LAN Equipment
- u Test & Measurement Equipment
- u Switching Systems
- **u** Instrumentation
- u DSLAMs
- u Base Stations
- u Analog Inputs

Mechanical Characteristics

u JEDEC SO-08 Package

u Molding Compound Flammability Rating: UL 94V-0

u Weight 70 Milligrams (Approximate)

u Quantity Per Reel: 500pcs

u Reel Size : 7 inchu Lead Finish : Lead Free

Mechanical Characteristics

Symbol	Parameter	Value	Units	
P _{PP}	Peak Pulse Power (tp=8/20µs waveform)	600	W	
T∟	Lead Soldering Temperature	260 (10sec)	°C	
T _{STG}	Storage Temperature Range	-55 to +150	°C	
T_J	Operating Temperature Range	-55 to +150	°C	
	IEC61000-4-2 (ESD) Air Discharge	±15	KV	
	Contact Discharge	±8	NV NV	
	IEC61000-4-4 (EFT)	40	Α	
	IEC61000-4-5 (Lightning)	24	А	

Low Capacitance

SLVU2.8-8

Electrical Characteristics (@ 25℃ Unless Otherwise Specified)

Part Number	Device	Device V_{RWM} V_{B} (V)		l _T	V _C @5A	Vc		I _R (μΑ) (Max.)	C (pF) (Typ.)
Fait Nullipel	Marking (Max.)	(V) (mA)	(Max.)	(Max.)	(@A)				
SLVU2.8-8	SLVU 2.8-8	2.8	3.0	1	8.5	20	24	5	5

Characteristic Curves

Fig1. 8/20µs Pulse Waveform

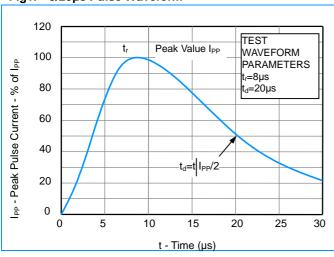


Fig2. ESD Pulse Waveform (according to IEC 61000-4-2)

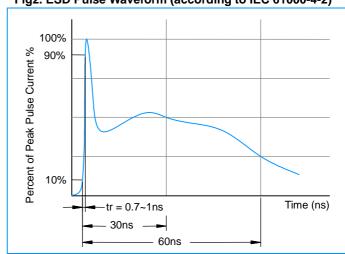


Fig3. Non - Repetitive Peak Pulse Power vs. Pulse Time

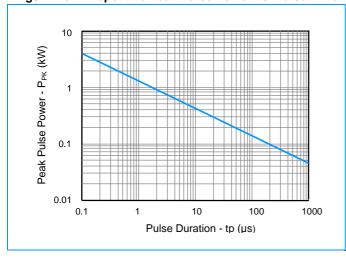
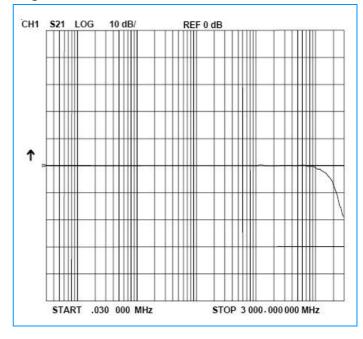
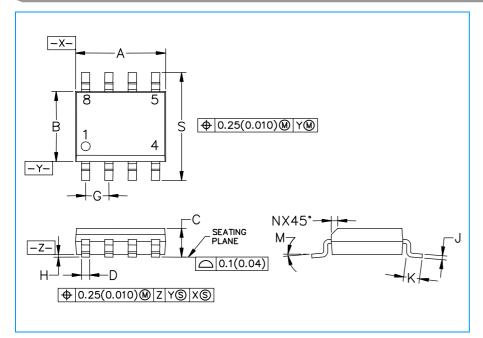



Fig4. Insertion Loss S21



Low Capacitance

SLVU2.8-8

SO-08 Package Outline & Dimensions

DIM	Millim	neters	Inches		
	Min	Max	Min	Max	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.053	0.069	
D	0.35	0.51	0.013	0.020	
G	1.27BSC		0.050BSC		
Н	0.10	0.25	0.004	0.010	
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
М	0°	8°	0°	8°	
N	0.25	0.50	0.010	0.020	
s	5.80	6.20	0.228	0.244	

7.0 (0.275) (0.155) (0.155) (0.050)

Low Capacitance

SLVU2.8-8

Applications Note

Electronic equipment is susceptible to damage caused by Electrostatic Discharge (ESD), Electrical Fast Transients (EFT), and tertiary lightning effects. Knowing that equipment can be damaged, the SLVU2.8-8 was designed to provide the level of protection required to safe guard sensitive equipment. This product can be used in different configurations to provide a level of protection to meet unidirectional line requirements as well as bidirectional requirements either in a common-mode or differential-mode configuration.

Figure 1. Unidirectional Common-Mode Protection

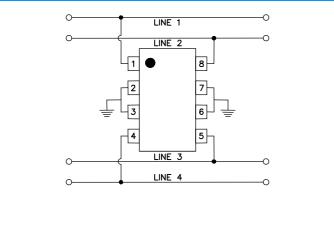
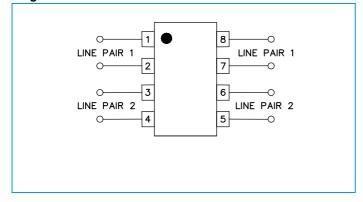



Figure 2. Bidirectional Differential-Mode Protection

Unidirectional Common-Mode Protection (Figure1)

The SLVU2.8-8 provides up to four lines of protection in a common-mode configuration as depicted in figure 1.

Circuit connectivity is as follows:

- Line 1 is connected to Pin 1
- Line 2 is connected to Pin 8
- Line 3 is connected to Pin 5
- Line 4 is connected to Pin 4
- Pins 2, 3, 6 and 7 are connected to ground

Bidirectional Differential-Mode Protection (Figure2)

The SLVU2.8-8 provides up to four lines of protection in a differential-mode configuration as depicted in figure 2.

Circuit connectivity is as follows:

- Line Pair 1 is connected to Pins 1 & 2
- Line Pair 2 is connected to Pins 3 & 4
- Line Pair 3 is connected to Pins 7 & 8
- Line Pair 4 is connected to Pins 5 & 6

Circuit Board Layout Recommendations

Circuit board layout is critical for Electromagnetic Compatibility (EMC) protection. The following guidelines are recommended:

- The protection device should be placed near the input terminals or connectors, the device will divert the transient current immediately before it can be coupled into the nearby traces.
- The path length between the TVS device and the protected line should be minimized.
- All conductive loops including power and ground loops should be minimized.
- The transient current return path to ground should be kept as short as possible to reduce parasitic inductance.
- Ground planes should be used whenever possible. For multilayer PCBs, use ground vias.