

ST7261

LOW SPEED USB 8-BIT MCU WITH 3 ENDPOINTS, FLASH MEMORY, LVD, WDG, TIMER

PRODUCT PREVIEW

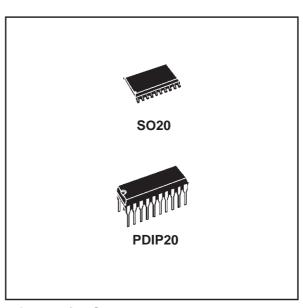
Memories

- 4K Program memory (ROM, FASTROM or Dual voltage FLASH) with read-write protection.
- In-Circuit programming for Flash versions
- 256 bytes RAM memory (128-byte stack)

■ Clock, Reset and Supply Management

- Enhanced Reset System (Power On Reset)
- Low Voltage Detector (LVD)
- Clock-out capability
- 6 or 12 MHz Oscillator (8, 4, 2, 1 MHz internal freq.)
- 3 Power saving modes: Halt, Wait and Slow

■ USB (Universal Serial Bus) Interface


- DMA for low speed applications compliant with USB 1.5 Mbs specification (v 1.1) and USB HID specification (v 1.0):
- Integrated 3.3V voltage regulator and transceivers
- Suspend and Resume operations
- 3 Endpoints

■ 11 I/O Ports

- 11 multifunctional bidirectional I/O lines
- Up to 7 External interrupts (2 vectors)
- 8 high sink outputs (8mA@0.4 V/20mA@1.3)

■ 2 Timers

- Configurable watchdog timer (8 to 500ms timeout)
- 8-bit Time Base Unit (TBU) for generating periodic interrupts

Instruction Set

- 8-bit data manipulation
- 63 basic instructions
- 17 main addressing modes
- 8 x 8 unsigned multiply instruction
- True bit manipulation

■ Development Tools

Full hardware/software development package

Device Summary

Features	ST72611F1	ST72F611F1	ST72P611F1					
Program memory - bytes	4K ROM	4K Flash	4K FASTROM					
RAM (stack) - bytes		256 (128)						
Peripherals	USB, Wa	USB, Watchdog, Low Voltage Detector, Time Base Unit						
Operating Supply		3.0V to 5.5V						
CPU Frequency	U	p to 8 MHz (with 6 or 12 MHz oscilla	tor)					
Operating Temperature		0°C to +70°C						
Packages		PDIP20/SO20						

Rev. 1.0

——— Table of Contents ———

1 INTR	RODUCTION 5						
1.1	PIN DESCRIPTION	6					
	1.1.1 PCB LAYOUT RECOMMENDATION						
	STER & MEMORY MAP						
	H PROGRAM MEMORY 1						
	INTRODUCTION 1						
3.2	MAIN FEATURES 1	1					
	STRUCTURE						
	PROGRAM MEMORY READ-OUT PROTECTION						
3.5	ICP (IN-CIRCUIT PROGRAMMING)	2					
	3.5.1 Register Description						
	RAL PROCESSING UNIT 1						
	INTRODUCTION 1						
	MAIN FEATURES 1						
	CPU REGISTERS						
	T AND CLOCK MANAGEMENT 1						
5.1	RESET 1						
	5.1.1 Low Voltage Reset						
	5.1.2 Watchdog Reset						
5 0	5.1.3 External Reset						
5.2	CLOCK SYSTEM						
	5.2.1 General Description 1 5.2.2 External Clock input 1						
	5.2.3 Clock Output Pin (MCO)						
6 INTE	RRUPTS						
	NON MASKABLE SOFTWARE INTERRUPT						
	EXTERNAL INTERRUPTS						
6.3	PERIPHERAL INTERRUPTS	:0					
	INTERRUPT REGISTER						
	ER SAVING MODES						
	INTRODUCTION						
7.2	SLOW MODE	:3					
	WAIT MODE						
	HALT MODE						
	DRTS						
	INTRODUCTION						
8.2	FUNCTIONAL DESCRIPTION	5					
	8.2.1 Input Modes						
	8.2.2 Output Mode						
	8.2.3 Alternate Functions	5					
	8.2.4 I/O Port Implementation						
	8.2.5 Port A						
	8.2.6 Port B 2 8.2.7 Register Description 2						
	U.L.I INUQUUI DUUNIPUUI	J					

Table of Contents

8	3.3	MISCE	LLANEOUS REGISTER	31
9 OI	N-C	HIP PE	RIPHERALS	32
9).1	WATCH	HDOG TIMER (WDG)	32
		9.1.1	Introduction	32
		9.1.2	Main Features	
		9.1.3	Functional Description	
		9.1.4	Software Watchdog Option	
		9.1.5 9.1.6	Hardware Watchdog Option	
		9.1.7	Interrupts	
		9.1.8	Register Description	
9	9.2		ASE UNIT (TBU)	
		9.2.1	Introduction	35
		9.2.2	Main Features	
		9.2.3	Functional Description	35
		9.2.4	Programming Example	
		9.2.5	Low Power Modes	
		9.2.6	Interrupts	
c	3	9.2.7	Register Description	
٥	<i>.</i>	9.3.1	Introduction	
		9.3.1	Main Features	
		9.3.3	Functional Description	
		9.3.4	Register Description	
		9.3.5	Programming Considerations	44
10 E	LE	CTRICA	AL CHARACTERISTICS	46
1	0.1	PARAM	TETER CONDITIONS	46
		10.1.1	Minimum and Maximum values	
		10.1.2	Typical values	
		10.1.3	Typical curves	
			Loading capacitor	
1	0.2		UTE MAXIMUM RATINGS	
'	0.2		Voltage Characteristics	
			Current Characteristics	
			Thermal Characteristics	
1	0.3		TING CONDITIONS	
		10.3.1	General Operating Conditions	48
		10.3.2	Operating Conditions with Low Voltage Detector (LVD)	49
1	0.4	SUPPL	Y CURRENT CHARACTERISTICS	50
1	0.5	CLOCK	AND TIMING CHARACTERISTICS	51
		10.5.1	General Timings	51
		10.5.2	CONTROL TIMING CHARACTERISTICS	51
	_		External Clock Source	
1	0.6		RY CHARACTERISTICS	
			RAM and Hardware Registers	
		10.6.2	FLASH Memory	53

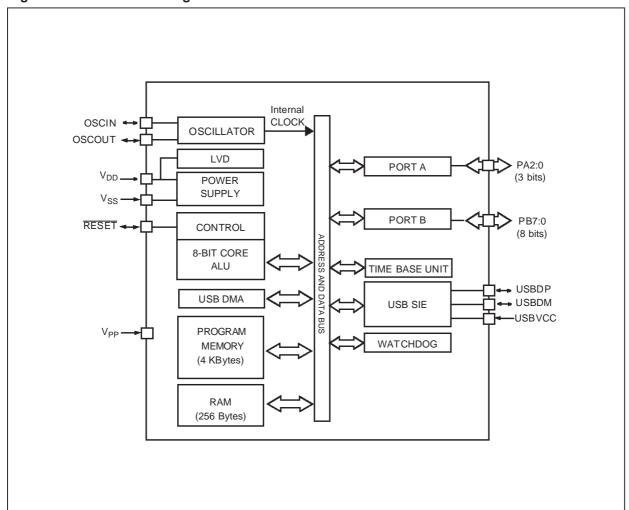
——— Table of Contents ——

	10.7 EMC C	HARACTERISTICS	54
	10.7.1	Functional EMS	54
		Absolute Electrical Sensitivity	
		ESD Pin Protection Strategy	
		RT PIN CHARACTERISTICS	
		General Characteristics	
	10.8.2	Output Driving Current	60
		ROL PIN CHARACTERISTICS	
		Asynchronous RESET Pin	
		MUNICATION INTERFACE CHARACTERISTICS	
		USB - Universal Bus Interface	
		MECHANICAL DATA	
12		NFIGURATION AND ORDERING INFORMATION	
	12.0.1	Option Byte	66
		E ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE	
	12.2 ST7 AF	PPLICATION NOTES	69
	12.3 TO GE	T MORE INFORMATION	69
13 :	SUMMARY	OF CHANGES	70

1 INTRODUCTION

The ST7261, ST72P61 and ST72F61 devices are members of the ST7 microcontroller family designed for USB applications.

All devices are based on a common industrystandard 8-bit core, featuring an enhanced instruction set.


The ST7261 ROM and ST72P61 FASTROM (Factory Advanced Service Technique ROM) devices are factory-programmed and are not reprogrammable.

The ST72F61 versions feature dual-voltage FLASH memory with In-Circuit Programming (ICP) capability.

Under software control, all devices can be placed in WAIT, SLOW, or HALT mode, reducing power consumption when the application is in idle or standby state.

The enhanced instruction set and addressing modes of the ST7 offer both power and flexibility to software developers, enabling the design of highly efficient and compact application code. In addition to standard 8-bit data management, all ST7 microcontrollers feature true bit manipulation, 8x8 unsigned multiplication and indirect addressing modes.

Figure 1. General Block Diagram

1.1 PIN DESCRIPTION

Figure 2. 20-pin SO20 Package Pinout

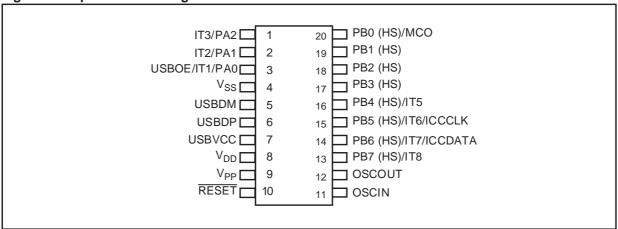
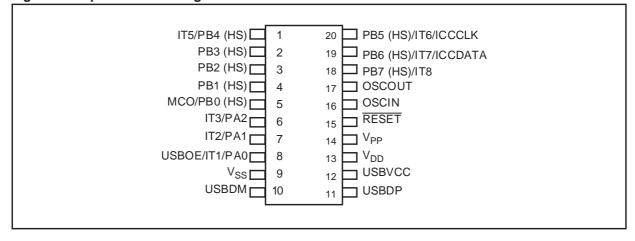
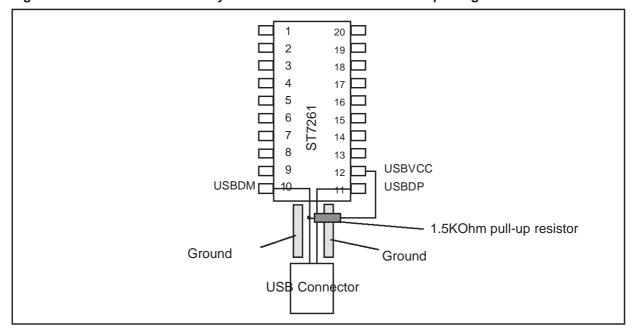



Figure 3. 20-pin DIP20 Package Pinout


6/71

PIN DESCRIPTION (Cont'd)

1.1.1 PCB LAYOUT RECOMMENDATION

In the case of DIP20 devices the user should layout the PCB so that the DIP20 ST7261 device and the USB connector are centered on the same axis ensuring that the D- and D+ lines are of equal length. Refer to Figure 4

Figure 4. Recommended PCB Layout for USB Interface with DIP20 package

PIN DESCRIPTION (Cont'd)

Legend / Abbreviations:

Type: I = input, O = output, S = supply Input level: A = Dedicated analog input Input level: $C = CMOS \ 0.3V_{DD}/0.7V_{DD}$

$$\begin{split} & \text{C} = \text{CMOS } 0.3 \text{V}_{\text{DD}} / 0.7 \text{V}_{\text{DD}}, \\ & \text{C}_{\text{T}} = \text{CMOS } 0.3 \text{V}_{\text{DD}} / 0.7 \text{V}_{\text{DD}} \text{ with input trigger} \end{split}$$

Output level: HS = high sink (on N-buffer only)

Port configuration capabilities:

Input: float = floating, wpu = weak pull-up, int = interrupt (\ =falling edge, / =rising edge),

ana = analog

- Output: OD = open drain, PP = push-pull

Table 1. Device Pin Description

Pin	n°			Le	vel		Ро	rt / (Cont	rol		Main	
50	20	Pin Name	Туре	Ħ	nt		Inp	out		Out	tput		Alternate Function
SO20	DIP20		-	Input	Output	float	ndw	int	ana	ОО	Ъ	(after reset)	
9	14	V _{PP}	S				х					FLASH programused tied low in user	mming voltage (12V), must be r mode.
11	16	OSCIN											used connect an external
12	17	OSCOUT										clock source to	the on-chip main oscillator.
4	9	V _{SS}	S									Digital Ground	Voltage
8	13	V _{DD}	S									Digital Main Po	ower Supply Voltage
13	18	PB7/IT8	I/O	СТ	HS	х		\			х	Port B7	Interrupt 8 input
14	19	PB6/IT7/ICCDATA	I/O	СТ	HS	х		١			х	Port B6	Interrupt 7 input/In-Circuit Communication Data
15	20	PB5/IT6/I CCCLK	I/O	Ст	HS	х		/			х	Port B5	Interrupt 6 input/In-Circuit Communication Clock
16	1	PB4/IT5	I/O	Ст	HS	х		/			х	Port B4	Interrupt 5 input
17	2	PB3	I/O	Ст	HS	х					х	Port B3	
18	3	PB2	I/O	СТ	HS	х					х	Port B2	
19	4	PB1	I/O	Ст	HS	х					х	Port B1	
20	5	PB0/MCO	I/O	СТ	HS	х					х	Port B0	CPU clock output
1	6	PA2/IT3	I/O	СТ		х		\			х	Port A2	Interrupt 3 input
2	7	PA1/IT2	I/O	СТ		Х		\			х	Port A1	Interrupt 2 input
3	8	PA0/IT1/USBOE	I/O	Ст		Х		١			х	Port A0	Interrupt 1 input/USB Output Enable
10	15	RESET	I/O	С								Top priority non maskable interrupt (active low)	
5	10	USBDM	I/O									USB bidirection	nal data (data -)
6	11	USBDP	I/O									USB bidirection	nal data (data +)
7	12	USBVCC	S									USB power su	pply 3.3V output

2 REGISTER & MEMORY MAP

As shown in the Figure 5, the MCU is capable of addressing 64K bytes of memories and I/O registers

The available memory locations consist of 64 bytes of register locations, 256 bytes of RAM and

4 Kbytes of user program memory. The RAM space includes up to 128 bytes for the stack from 0100h to 017Fh.

The highest address bytes contain the user reset and interrupt vectors.

Figure 5. Memory Map

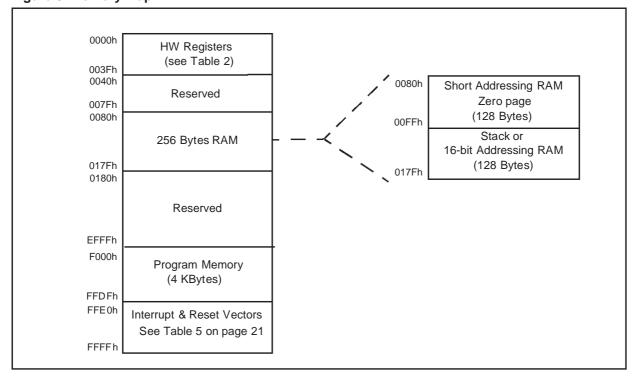


Table 2. Hardware Register Map

Address	Block	Register Label	Register Name	Reset Status	Remarks		
0000h 0001h	Port A	PADR PADDR	Port A Data Register Port A Data Direction Register	00h 00h	R/W R/W		
0002h 0003h	Port B	PBDR PBDDR	Port B Data Register Port B Data Direction Register	00h 00h	R/W R/W.		
0004h to 0007h			Reserved Area (4 Bytes)				
0008h		ITRFRE1	Interrupt Register 1	00h	R/W		
0009h		MISC	Miscellaneous Register	00h	R/W		
000Ah to 000Ch		Reserved Area (2 Bytes)					
000Dh	WDG	WDGCR	Watchdog Control Register	7Fh	R/W		
000Eh to 0024h	Reserved Area (23 Bytes)						
0025h 0026h 0027h 0028h 0029h 002Ah 002Bh 002Ch 002Dh 002Eh 003Fh 0031h	USB	USBPIDR USBDMAR USBIDR USBISTR USBIMR USBCTLR USBDADDR USBEPORA USBEPORA USBEP1RA USBEP1RB USBEP1RB USBEP2RA USBEP2RB	USB PID Register USB DMA Address register USB Interrupt/DMA Register USB Interrupt Status Register USB Interrupt Mask Register USB Control Register USB Device Address Register USB Endpoint 0 Register A USB Endpoint 0 Register B USB Endpoint 1 Register A USB Endpoint 1 Register B USB Endpoint 2 Register A USB Endpoint 2 Register B	x0h xxh x0h 00h 00h 06h 0000 xxxxb 80h 0000 xxxxb 0000 xxxxb	Read Only R/W		
to 0035h			Reserved Area (4 Bytes)				
0036h 0037h	TBU	1 · · · · · · · · · · · · · · · · · · ·		R/W R/W			
0038h	FLASH	FCSR	Flash Control Status Register	00h	R/W		
0039h to 003Fh	Reserved Area (7 Bytes)						

10/71

3 FLASH PROGRAM MEMORY

3.1 Introduction

The ST7 dual voltage Flash is a non-volatile memory that can be electrically erased as a single block or by individual sectors and programmed on a Byte-by-Byte basis using an external V_{PP} supply.

The Flash devices can be programmed and erased off-board (plugged in a programming tool) or on-board using ICP (In-Circuit Programming).

The array matrix organisation allows each sector to be erased and reprogrammed without affecting other sectors.

3.2 Main Features

- Two Flash programming modes:
 - Insertion in a programming tool. In this mode, all sectors including option bytes can be programmed or erased.
 - ICP (In-Circuit Programming). In this mode, all sectors including option bytes can be programmed or erased without removing the device from the application board.
- ICT (In-Circuit Testing) for downloading and executing user application test patterns in RAM
- Read-out protection against piracy
- Register Access Security System (RASS) to prevent accidental programming or erasing

3.3 Structure

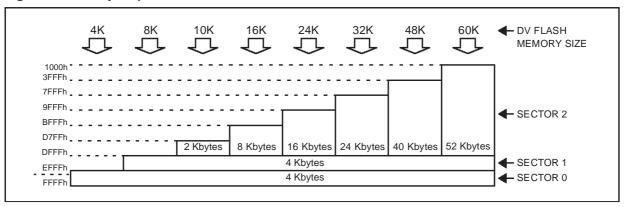
The Flash memory is organised in sectors and can be used for both code and data storage.

Depending on the overall FLASH memory size in the microcontroller device, there are up to three user sectors (see Table 3). Each of these sectors can be erased independently to avoid unnecessary erasing of the whole Flash memory when only a partial erasing is required.

The first two sectors have a fixed size of 4 Kbytes (see Figure 6). They are mapped in the upper part of the ST7 addressing space so the reset and interrupt vectors are located in Sector 0 (F000h-FFFFh).

Table 3. Sectors available in FLASH devices

Flash Memory Size (bytes)	Available Sectors		
4K	Sector 0		
8K	Sectors 0,1		
> 8K	Sectors 0,1, 2		


3.4 Program Memory Read-out Protection

The read-out protection is enabled through an option bit.

For Flash devices, when this option is selected, the program and data stored in the program memory (Flash or ROM) are protected against read-out piracy (including a re-write protection). In Flash devices, when this protection is removed by reprogramming the Option Byte, the entire program memory is first automatically erased.

Refer to the Option Byte description for more details.

Figure 6. Memory Map and Sector Address

FLASH PROGRAM MEMORY (Cont'd)

3.5 ICP (In-Circuit Programming)

To perform ICP the microcontroller must be switched to ICC (In-Circuit Communication) mode by an external controller or programming tool.

Depending on the ICP code downloaded in RAM, Flash memory programming can be fully customized (number of bytes to program, program locations, or selection serial communication interface for downloading).

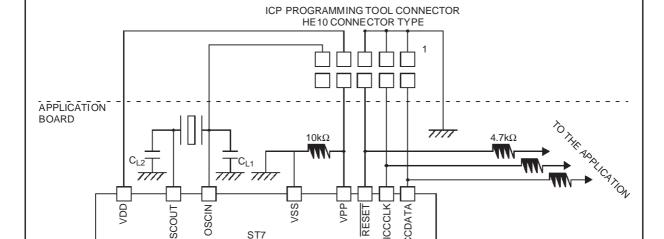
When using an STMicroelectronics or third-party programming tool that supports ICP and the specific microcontroller device, the user needs only to implement the ICP hardware interface on the application board (see Figure 7). For more details on the pin locations, refer to the device pinout description.

ICP needs five signals to be connected to the programming tool. These signals are:

OSCIN

ST7

- RESET: device reset
- V_{SS}: device power supply ground
- ICCCLK: ICC output serial clock pin
- ICCDATA: ICC input serial data pin
- V_{PP}: programming voltage


When the device is not yet configured to support the application clock source (option byte not yet programmed) or if the option bytes have to be programmed using ICP, one more pin has to be connected:

- OSCIN: main clock input for external source When the device is not supplied (V_{DD}) by the application, one more pin has to be connected:
 - V_{DD}: main power supply

CAUTIONS:

- 1. If RESET, ICCCLK or ICCDATA pins are used for other purposes in the application, a serial resistor has to be implemented to avoid a conflict in case one of the other devices forces the signal lev-
- 2. As soon as the external controller is plugged to the board, even if an ICC session is not in progress, the ICCCLK and ICCDATA pins are not available for the application.

Note: To develop a custom programming tool, refer to the ST7 FLASH Programming and ICC Reference Manual which gives full details on the ICC protocol hardware and software.

RESET

Figure 7. Typical ICP Interface

57/

FLASH PROGRAM MEMORY (Cont'd)

3.5.1 Register Description

FLASH CONTROL/STATUS REGISTER (FCSR)

Read/Write

Reset Value: 0000 0000 (00h)

7							0
0	0	0	0	0	0	0	0

This register is reserved for use by Programming Tool software. It controls the FLASH programming and erasing operations. For details on FLASH programming and In-Circuit Testing, refer to the ST7 FLASH Programming and ICC Reference Manual.

4 CENTRAL PROCESSING UNIT

4.1 INTRODUCTION

This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-bit data manipulation.

4.2 MAIN FEATURES

- 63 basic instructions
- Fast 8-bit by 8-bit multiply
- 17 main addressing modes
- Two 8-bit index registers
- 16-bit stack pointer
- Low power modes
- Maskable hardware interrupts
- Non-maskable software interrupt

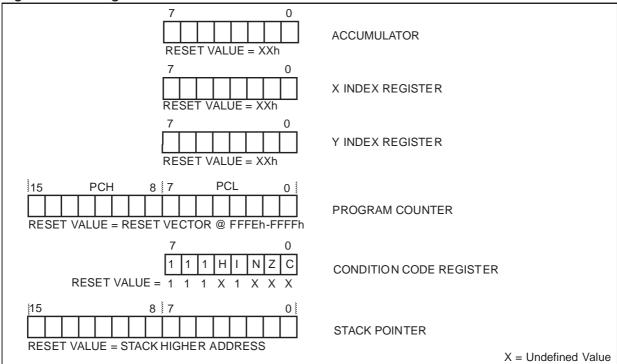
4.3 CPU REGISTERS

The 6 CPU registers shown in Figure 8 are not present in the memory mapping and are accessed by specific instructions.

Accumulator (A)

The Accumulator is an 8-bit general purpose register used to hold operands and the results of the arithmetic and logic calculations and to manipulate data.

Index Registers (X and Y)


In indexed addressing modes, these 8-bit registers are used to create either effective addresses or temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the following instruction refers to the Y register.)

The Y register is not affected by the interrupt automatic procedures (not pushed to and popped from the stack).

Program Counter (PC)

The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB).

Figure 8. CPU Registers

CPU REGISTERS (Cont'd) CONDITION CODE REGISTER (CC)

Read/Write

Reset Value: 111x1xxx

The 8-bit Condition Code register contains the interrupt mask and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions.

These bits can be individually tested and/or controlled by specific instructions.

Bit $4 = \mathbf{H}$ Half carry.

This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instruction. It is reset by hardware during the same instructions.

- 0: No half carry has occurred.
- 1: A half carry has occurred.

This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines

Bit 3 = I Interrupt mask.

This bit is set by hardware when entering in interrupt or by software to disable all interrupts except the TRAP software interrupt. This bit is cleared by software.

- 0: Interrupts are enabled.
- 1: Interrupts are disabled.

This bit is controlled by the RIM, SIM and IRET instructions and is tested by the JRM and JRNM instructions.

Note: Interrupts requested while I is set are latched and can be processed when I is cleared. By default an interrupt routine is not interruptable

because the I bit is set by hardware at the start of the routine and reset by the IRET instruction at the end of the routine. If the I bit is cleared by software in the interrupt routine, pending interrupts are serviced regardless of the priority level of the current interrupt routine.

Bit 2 = N Negative.

This bit is set and cleared by hardware. It is representative of the result sign of the last arithmetic, logical or data manipulation. It is a copy of the 7th bit of the result.

- 0: The result of the last operation is positive or null.
- 1: The result of the last operation is negative (i.e. the most significant bit is a logic 1).

This bit is accessed by the JRMI and JRPL instructions.

Bit 1 = **Z** *Zero*.

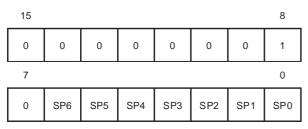
This bit is set and cleared by hardware. This bit indicates that the result of the last arithmetic, logical or data manipulation is zero.

- 0: The result of the last operation is different from zero.
- 1: The result of the last operation is zero.

This bit is accessed by the JREQ and JRNE test instructions.

Bit 0 = **C** Carry/borrow.

This bit is set and cleared by hardware and software. It indicates an overflow or an underflow has occurred during the last arithmetic operation.


- 0: No overflow or underflow has occurred.
- 1: An overflow or underflow has occurred.

This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It is also affected by the "bit test and branch", shift and rotate instructions.

CENTRAL PROCESSING UNIT (Cont'd) Stack Pointer (SP)

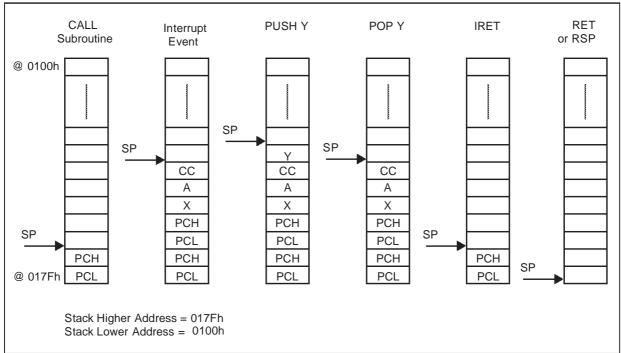
Read/Write

Reset Value: 01 7Fh

The Stack Pointer is a 16-bit register which is always pointing to the next free location in the stack. It is then decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see Figure 9).

Since the stack is 128 bytes deep, the 9 most significant bits are forced by hardware. Following an MCU Reset, or after a Reset Stack Pointer instruction (RSP), the Stack Pointer contains its reset value (the SP6 to SP0 bits are set) which is the stack higher address.

The least significant byte of the Stack Pointer (called S) can be directly accessed by a LD instruction.


Note: When the lower limit is exceeded, the Stack Pointer wraps around to the stack upper limit, without indicating the stack overflow. The previously stored information is then overwritten and therefore lost. The stack also wraps in case of an underflow.

The stack is used to save the return address during a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instructions. In the case of an interrupt, the PCL is stored at the first location pointed to by the SP. Then the other registers are stored in the next locations as shown in Figure 9.

- When an interrupt is received, the SP is decremented and the context is pushed on the stack.
- On return from interrupt, the SP is incremented and the context is popped from the stack.

A subroutine call occupies two locations and an interrupt five locations in the stack area.

Figure 9. Stack Manipulation Example

57/

5 RESET AND CLOCK MANAGEMENT

5.1 RESET

The Reset procedure is used to provide an orderly software start-up or to exit low power modes.

Three reset modes are provided: a low voltage reset, a watchdog reset and an external reset at the RESET pin.

A reset causes the reset vector to be fetched from addresses FFFEh and FFFFh in order to be loaded into the PC and with program execution starting from this point.

An internal circuitry provides a 514 CPU clock cycle delay from the time that the oscillator becomes active.

5.1.1 Low Voltage Reset

Low voltage reset circuitry generates a reset when $V_{\mbox{\scriptsize DD}}$ is:

- below V_{IT+} when V_{DD} is rising,
- below V_{IT} when V_{DD} is falling.

During low voltage reset, the RESET pin is held low, thus permitting the MCU to reset other devices.

The Low Voltage Detector can be disabled by setting the LVD bit of the Option byte.

5.1.2 Watchdog Reset

When a watchdog reset occurs, the RESET pin is pulled low permitting the MCU to reset other devices as when low voltage reset (Figure 10).

5.1.3 External Reset

The external reset is an active low input signal applied to the RESET pin of the MCU.

As shown in Figure 13, the RESET signal must stay low for a minimum of one and a half CPU clock cycles.

An internal Schmitt trigger at the RESET pin is provided to improve noise immunity.

Figure 10. Low Voltage Reset functional Diagram

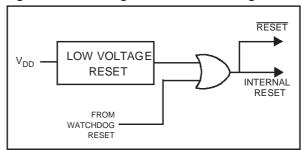
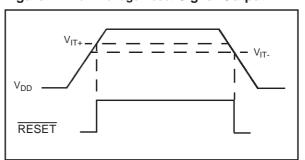



Figure 11. Low Voltage Reset Signal Output

Note: Typical hysteresis (V_{IT+} - V_{IT-}) of 250 mV is expected

Figure 12. Temporization timing diagram after an internal Reset

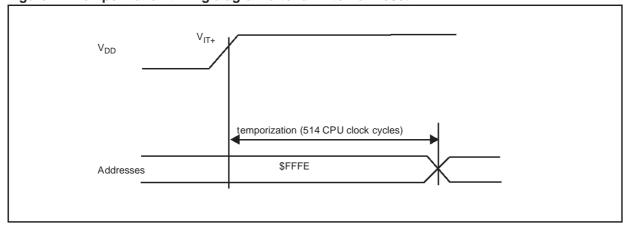
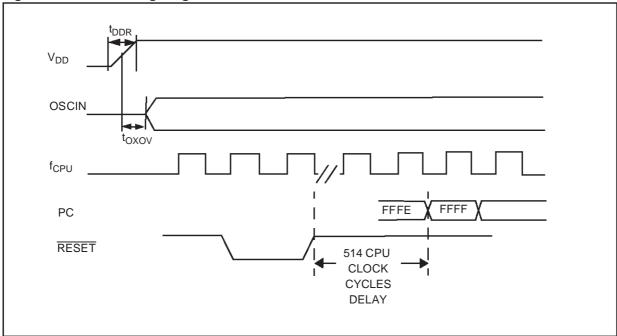
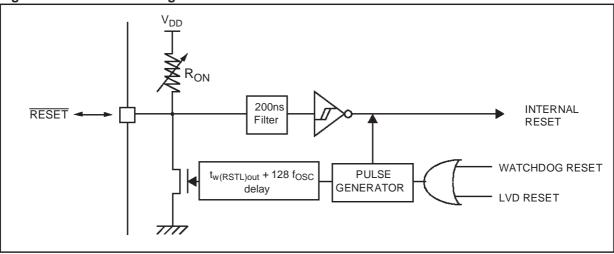




Figure 13. Reset Timing Diagram

Note: Refer to Electrical Characteristics for values of t_{DDR} , t_{OXOV} , V_{IT+} and V_{IT-}

Figure 14. Reset Block Diagram

Note: The output of the external reset circuit must have an open-drain output to drive the ST7 reset pad. Otherwise the device can be damaged when the ST7 generates an internal reset (LVD or watchdog).

5.2 CLOCK SYSTEM

5.2.1 General Description

The MCU accepts either a Crystal or Ceramic resonator, or an external clock signal to drive the internal oscillator. The internal clock (f_{CPU}) is derived from the external oscillator frequency (f_{OSC}), by dividing by 3 and multiplying by 2. By setting the OSC12/6 bit in the option byte, a 12 MHz external clock can be used giving an internal frequency of 8 MHz while maintaining a 6 MHz clock for USB (refer to Figure 17).

The internal clock signal (f_{CPU}) consists of a square wave with a duty cycle of 50%.

It is further divided by 1, 2, 4 or 8 depending on the Slow Mode Selection bits in the Miscellaneous register (SMS[1:0])

The internal oscillator is designed to operate with an AT-cut parallel resonant quartz or ceramic resonator in the frequency range specified for $f_{\rm osc}.$ The circuit shown in Figure 16 is recommended when using a crystal, and Table 4 lists the recommended capacitors. The crystal and associated components should be mounted as close as possible to the input pins in order to minimize output distortion and start-up stabilization time.

Table 4. Recommended Values for 12 MHz Crystal Resonator

R _{SMAX}	20 Ω	25 Ω	70 Ω
C _{OSCIN}	56pF	47pF	22pF
C _{OSCOUT} 56pF		47pF	22pF
R_P	1-10 MΩ	1-10 MΩ	1-10 MΩ

Note: R_{SMAX} is the equivalent serial resistor of the crystal (see crystal specification).

5.2.2 External Clock input

An external clock may be applied to the OSCIN input with the OSCOUT pin not connected, as shown on Figure 15. The t_{OXOV} specifications does not apply when using an external clock input. The equivalent specification of the external clock source should be used instead of t_{OXOV} (see Electrical Characteristics).

5.2.3 Clock Output Pin (MCO)

The internal clock (f_{CPU}) can be output on Port B0 by setting the MCO bit in the Miscellaneous register.

Figure 15. External Clock Source Connections

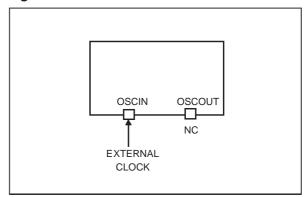


Figure 16. Crystal/Ceramic Resonator

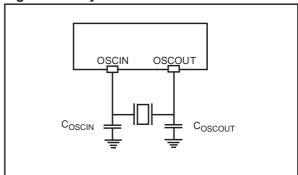
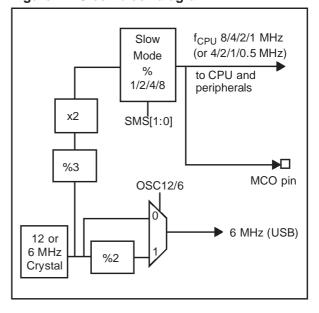



Figure 17. Clock block diagram

6 INTERRUPTS

The ST7 core may be interrupted by one of two different methods: maskable hardware interrupts as listed in the Interrupt Mapping Table and a non-maskable software interrupt (TRAP). The Interrupt processing flowchart is shown in Figure 18.

The maskable interrupts must be enabled clearing the I bit in order to be serviced. However, disabled interrupts may be latched and processed when they are enabled (see external interrupts subsection).

When an interrupt has to be serviced:

- Normal processing is suspended at the end of the current instruction execution.
- The PC, X, A and CC registers are saved onto the stack.
- The I bit of the CC register is set to prevent additional interrupts.
- The PC is then loaded with the interrupt vector of the interrupt to service and the first instruction of the interrupt service routine is fetched (refer to the Interrupt Mapping Table for vector addresses).

The interrupt service routine should finish with the IRET instruction which causes the contents of the saved registers to be recovered from the stack.

Note: As a consequence of the IRET instruction, the I bit will be cleared and the main program will resume.

Priority Management

By default, a servicing interrupt cannot be interrupted because the I bit is set by hardware entering in interrupt routine.

In the case when several interrupts are simultaneously pending, an hardware priority defines which one will be serviced first (see the Interrupt Mapping Table).

Interrupts and Low Power Mode

All interrupts allow the processor to leave the WAIT low power mode. Only external and specifically mentioned interrupts allow the processor to leave the HALT low power mode (refer to the "Exit from HALT" column in the Interrupt Mapping Table).

6.1 NON MASKABLE SOFTWARE INTERRUPT

This interrupt is entered when the TRAP instruction is executed regardless of the state of the I bit.

It will be serviced according to the flowchart on Figure 18.

6.2 EXTERNAL INTERRUPTS

External interrupt vectors can be loaded into the PC register if the corresponding external interrupt occurred and if the I bit is cleared. These interrupts allow the processor to leave the Halt low power mode.

The external interrupt polarity is selected through the miscellaneous register or interrupt register (if available).

An external interrupt triggered on edge will be latched and the interrupt request automatically cleared upon entering the interrupt service routine.

If several input pins, connected to the same interrupt vector, are configured as interrupts, their signals are logically ANDed and inverted before entering the edge/level detection block.

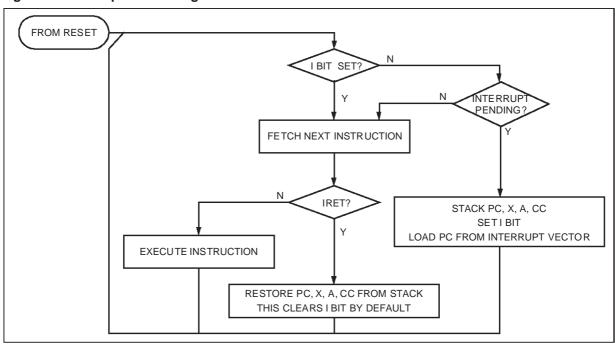
Caution: The type of sensitivity defined in the Miscellaneous or Interrupt register (if available) applies to the ei source. In case of an ANDed source (as described on the I/O ports section), a low level on an I/O pin configured as input with interrupt, masks the interrupt request even in case of rising-edge sensitivity.

6.3 PERIPHERAL INTERRUPTS

Different peripheral interrupt flags in the status register are able to cause an interrupt when they are active if both:

- The I bit of the CC register is cleared.
- The corresponding enable bit is set in the control register.

If any of these two conditions is false, the interrupt is latched and thus remains pending.


Clearing an interrupt request is done by:

- Writing "0" to the corresponding bit in the status register or
- Access to the status register while the flag is set followed by a read or write of an associated register.

Note: the clearing sequence resets the internal latch. A pending interrupt (i.e. waiting for being enabled) will therefore be lost if the clear sequence is executed.

INTERRUPTS (Cont'd)

Figure 18. Interrupt Processing Flowchart

Table 5. Interrupt Mapping

N°	Source Block	Description	Register Label	Exit from HALT	Address Vector	Priority Order	
		Reset Vector		Yes	FFFEh-FFFFh		
		TRAP software interrupt vector		No	FFFCh-FFFDh	Highest Priority	
0	ICP	FLASH Start programming NMI interrupt vector		Yes	FFFAh-FFFBh		
1	USB	USB End Suspend interrupt vector	USBISTR	Yes	FFF8h-FFF9h	1	
2	I/O Ports	Port A external interrupts IT[3:1]	ITRFRE1	Yes	FFF6h-FFF7h	1	
3	I/O Folis	Port B external interrupts IT[8:5]	IIIXIIXLI	Yes	FFF4h-FFF5h	1	
4		NOT USED			FFF2h-FFF3h]	
5	TBU	Timebase Unit interrupt vector	TBUCSR	No	FFF0h-FFF1h	1	
6		NOT USED			FFEEh-FFEFh	1	
7	NOT USED FFECh-FFEDh						
8		FFEAh-FFEBh	Lowest				
9	USB	USB interrupt vector	USBISTR	No	FFE8h-FFE9h	Priority	
10		NOT USED			FFE6h-FFE7h		

6.4 Interrupt Register

INTERRUPT REGISTER 1 (ITRFRE1)

Address: 0008h - Read/Write Reset Value: 0000 0000 (00h)

,							U
IT8E	IT7E	IT6E	IT5E	0	IT3E	IT2E	IT1E

Bit 7:0 = ITiE Interrupt Enable

0: I/O pin free for general purpose I/O

1: ITi external interrupt enabled.

Note: The corresponding interrupt is generated when:

- a rising edge occurs on the IT5/IT6 pins
- a falling edge occurs on the IT1, 2, 3, 7 and 8 pins

7 POWER SAVING MODES

7.1 INTRODUCTION

There are three Power Saving modes. Slow Mode is selected by setting the SMS bits in the Miscellaneous register. Wait and Halt modes may be entered using the WFI and HALT instructions.

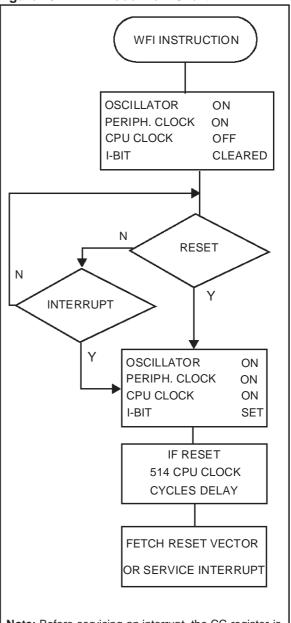
After a RESET the normal operating mode is selected by default (RUN mode). This mode drives the device (CPU and embedded peripherals) by means of a master clock which is based on the main oscillator frequency divided by 3 and multiplied by 2 (f_{CPLI}).

From Run mode, the different power saving modes may be selected by setting the relevant register bits or by calling the specific ST7 software instruction whose action depends on the oscillator status.

7.2 SLOW MODE

In Slow mode, the oscillator frequency can be divided by a value defined in the Miscellaneous Register. The CPU and peripherals are clocked at this lower frequency. Slow mode is used to reduce power consumption, and enables the user to adapt clock frequency to available supply voltage.

7.3 WAIT MODE


WAIT mode places the MCU in a low power consumption mode by stopping the CPU.

This power saving mode is selected by calling the "WFI" ST7 software instruction.

All peripherals remain active. During WAIT mode, the I bit of the CC register is forced to 0, to enable all interrupts. All other registers and memory remain unchanged. The MCU remains in WAIT mode until an interrupt or Reset occurs, whereupon the Program Counter branches to the starting address of the interrupt or Reset service routine. The MCU will remain in WAIT mode until a Reset or an Interrupt occurs, causing it to wake up.

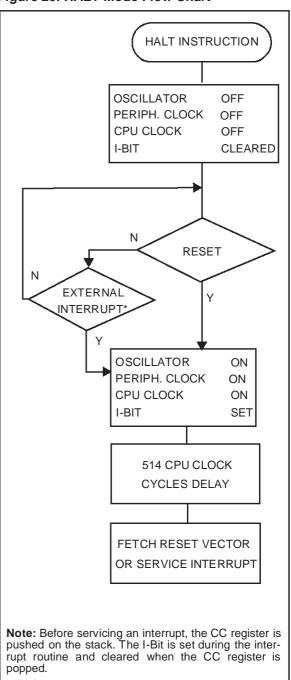
Refer to Figure 19.

Figure 19. WAIT Mode Flow Chart

Note: Before servicing an interrupt, the CC register is pushed on the stack. The I-Bit is set during the interrupt routine and cleared when the CC register is popped.

POWER SAVING MODES (Cont'd)

7.4 HALT MODE


The HALT mode is the MCU lowest power consumption mode. The HALT mode is entered by executing the HALT instruction. The internal oscillator is then turned off, causing all internal processing to be stopped, including the operation of the on-chip peripherals.

When entering HALT mode, the I bit in the Condition Code Register is cleared. Thus, any of the external interrupts (ITi or USB end suspend mode), are allowed and if an interrupt occurs, the CPU clock becomes active.

The MCU can exit HALT mode on reception of either an external interrupt on ITi, an end suspend mode interrupt coming from USB peripheral, or a reset. The oscillator is then turned on and a stabilization time is provided before releasing CPU operation. The stabilization time is 514 CPU clock cycles.

After the start up delay, the CPU continues operation by servicing the interrupt which wakes it up or by fetching the reset vector if a reset wakes it up.

Figure 20. HALT Mode Flow Chart

24/71

8 I/O PORTS

8.1 INTRODUCTION

The I/O ports offer different functional modes: transfer of data through digital inputs and outputs and for specific pins:

- Analog signal input (ADC)
- Alternate signal input/output for the on-chip peripherals.
- External interrupt generation

An I/O port is composed of up to 8 pins. Each pin can be programmed independently as digital input or digital output.

8.2 FUNCTIONAL DESCRIPTION

Each port is associated with 2 main registers:

- Data Register (DR)
- Data Direction Register (DDR)

Each I/O pin may be programmed using the corresponding register bits in DDR register: bit x corresponding to pin x of the port. The same correspondence is used for the DR register.

Table 6. I/O Pin Functions

DDR	MODE		
0	Input		
1	Output		

8.2.1 Input Modes

The input configuration is selected by clearing the corresponding DDR register bit.

In this case, reading the DR register returns the digital value applied to the external I/O pin.

Notes:

- 1. All the inputs are triggered by a Schmitt trigger.
- 2. When switching from input mode to output mode, the DR register should be written first to output the correct value as soon as the port is configured as an output.

Interrupt function

When an external interrupt function of an I/O pin, is enabled using the ITFRE registers, an event on this I/O can generate an external Interrupt request

to the CPU. The interrupt sensitivity is programmable, the options are given in the description of the ITRFRE interrupt registers.

Each pin can independently generate an Interrupt request.

Each external interrupt vector is linked to a dedicated group of I/O port pins (see Interrupts section). If more than one input pin is selected simultaneously as interrupt source, this is logically ORed. For this reason, if an event occurs on one of the interrupt pins, it masks the other ones.

8.2.2 Output Mode

The pin is configured in output mode by setting the corresponding DDR register bit (see Table 7).

In this mode, writing "0" or "1" to the DR register applies this digital value to the I/O pin through the latch. Then reading the DR register returns the previously stored value.

Note: In this mode, the interrupt function is disabled.

8.2.3 Alternate Functions

Digital Alternate Functions

When an on-chip peripheral is configured to use a pin, the alternate function is automatically selected. This alternate function takes priority over standard I/O programming. When the signal is coming from an on-chip peripheral, the I/O pin is automatically configured in output mode (push-pull or open drain according to the peripheral).

When the signal is going to an on-chip peripheral, the I/O pin has to be configured in input mode. In this case, the pin state is also digitally readable by addressing the DR register.

Notes:

- Input pull-up configuration can cause an unexpected value at the alternate peripheral input.
- 2. When the on-chip peripheral uses a pin as input and output, this pin must be configured as an input (DDR = 0).

Warning: Alternate functions of peripherals must must not be activated when the external interrupts are enabled on the same pin, in order to avoid generating spurious interrupts.

I/O PORTS (Cont'd)

Analog Alternate Functions

When the pin is used as an ADC input, the I/O must be configured as input. The analog multiplexer (controlled by the ADC registers) switches the analog voltage present on the selected pin to the common analog rail which is connected to the ADC input.

It is recommended not to change the voltage level or loading on any port pin while conversion is in progress. Furthermore it is recommended not to have clocking pins located close to a selected analog pin.

Warning. The analog input voltage level must be within the limits stated in the Absolute Maximum Ratings.

8.2.4 I/O Port Implementation

The hardware implementation on each I/O port depends on the settings in the DDR register and specific features of the I/O port such as ADC Input or true open drain.

577

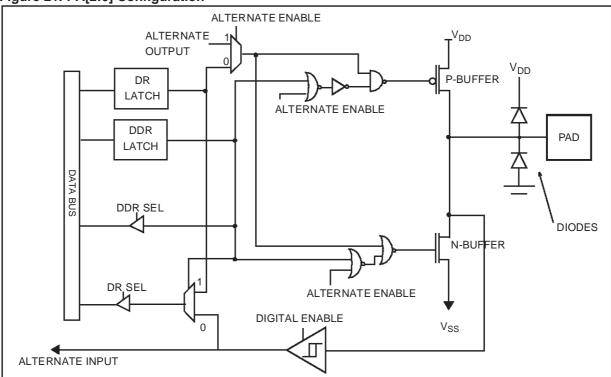

I/O PORTS (Cont'd) 8.2.5 Port A

Table 7. Port A Description

PORT A	I/	0	Alterna	te Function
FORTA	Input* Output		Signal	Condition
PA0	floating	push-pull	USBOE	USBOE = 1 (MISC)
I FAO	noating	pusii-puii	IT1 Schmitt triggered input	IT1E = 1 (ITRFRE1)
PA1	floating	push-pull	IT2 Schmitt triggered input	IT2E = 1 (ITRFRE1)
PA2	floating	push-pull	IT3 Schmitt triggered input	IT3E = 1 (ITRFRE1)

^{*}Reset State

Figure 21. PA[2:0] Configuration

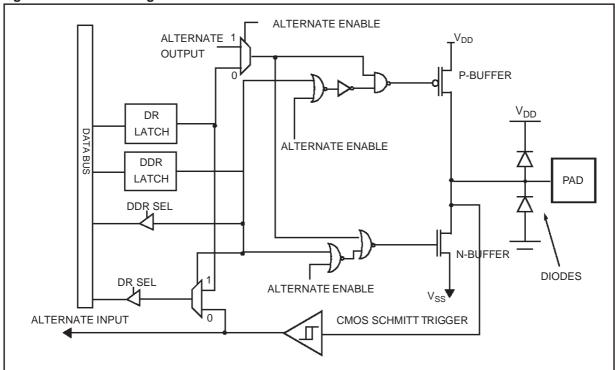

I/O PORTS (Cont'd) 8.2.6 Port B

Table 8. Port B Description

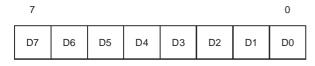
PORT B		I/O	Alternate Function			
TORTE	In put*	Output	Signal	Condition		
PB0	floating	push-pull (high sink)	MCO (Main Clock Output)	MCO = 1 (MISCR)		
PB1	floating	push-pull (high sink)				
PB2	floating	push-pull (high sink)				
PB3	floating	push-pull (high sink)				
PB4	floating	push-pull (high sink)	IT5 Schmitt triggered input	IT5E = 1 (ITRFRE1)		
PB5	floating	push-pull (high sink)	IT6 Schmitt triggered input	IT6E = 1 (ITRFRE1)		
PB6	floating	push-pull (high sink)	IT7 Schmitt triggered input	IT7E = 1 (ITRFRE1)		
PB7	floating	push-pull (high sink)	IT8 Schmitt triggered input	IT8E = 1 (ITRFRE1)		

^{*}Reset State

Figure 22. Port B Configuration

57

I/O PORTS (Cont'd)


8.2.7 Register Description

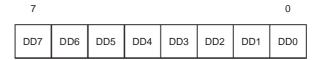
DATA REGISTER (DR)

Port x Data Register PxDR with x = A or B.

Read/Write

Reset Value: 0000 0000 (00h)

Bit 7:0 = **D[7:0]** *Data register 8 bits.*


The DR register has a specific behaviour according to the selected input/output configuration. Writing the DR register is always taken into account even if the pin is configured as an input; this allows to always have the expected level on the pin when toggling to output mode. Reading the DR register returns either the DR register latch content (pin configured as output) or the digital value applied to the I/O pin (pin configured as input).

DATA DIRECTION REGISTER (DDR)

Port x Data Direction Register PxDDR with x = A or B.

Read/Write

Reset Value: 0000 0000 (00h)

Bit 7:0 = **DD[7:0]** Data direction register 8 bits.

The DDR register gives the input/output direction configuration of the pins. Each bit is set and cleared by software.

0: Input mode

1: Output mode

I/O PORTS (Cont'd)

Table 9. I/O Port Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
	t Value ort registers	0	0	0	0	0	0	0	0
0000h	PADR	MSB							LSB
0001h	PADDR	IVIOD							LOD
0002h	PBDR	MCD							100
0003h	PBDDR	MSB							LSB

8.3 MISCELLANEOUS REGISTER

MISCELLANEOUS REGISTER

Read Write

Reset Value - 0000 0000 (00h)

7							0
-	-	-	-	SMS1	SMS0	US- BOE	мсо

Bit 7:4 = Reserved

Bit 3:2 = **SMS[1:0]** Slow Mode Selection These bits select the Slow Mode frequency (depending on the oscillator frequency configured by option byte).

OSC12/6	SMS1	SMS0	Slow Mode Frequency (MHz.)
	0	0	4
f _{OSC} = 6 MHz.	0	1	2
10SC- 0 WI 12.	1	0	1
	1	1	0.5
	0	0	8
f _{OSC} = 12 MHz.	0	1	4
10SC- 12 WI12.	1	0	2
	1	1	1

Bit 1 = **USBOE** *USB Output Enable*

0: PA0 port free for general purpose I/O

1: USBOE alternate function enabled. The USB output enable signal is output on the PA0 port (at "1" when the ST7 USB is transmitting data).

Bit 0 = **MCO** Main Clock Out

0: PB0 port free for general purpose I/O

1: MCO alternate function enabled (f_{CPU} output on PB0 I/O port)

9 ON-CHIP PERIPHERALS

9.1 WATCHDOG TIMER (WDG)

9.1.1 Introduction

The Watchdog timer is used to detect the occurrence of a software fault, usually generated by external interference or by unforeseen logical conditions, which causes the application program to abandon its normal sequence. The Watchdog circuit generates an MCU reset on expiry of a programmed time period, unless the program refreshes the counter's contents before the T6 bit becomes cleared.

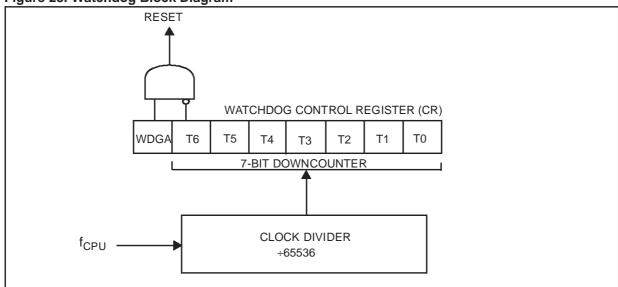
9.1.2 Main Features

- Programmable timer (64 increments of 65536 CPU cycles)
- Programmable reset
- Reset (if watchdog activated) when the T6 bit reaches zero
- Hardware Watchdog selectable by option byte

9.1.3 Functional Description

The counter value stored in the CR register (bits T[6:0]), is decremented every 65,536 machine cycles, and the length of the timeout period can be programmed by the user in 64 increments.

If the watchdog is activated (the WDGA bit is set) and when the 7-bit timer (bits T[6:0]) rolls over from 40h to 3Fh (T6 becomes cleared), it initiates a reset cycle pulling low the reset pin for typically 500ns.


The application program must write in the CR register at regular intervals during normal operation to prevent an MCU reset. The value to be stored in the CR register must be between FFh and C0h (see Table 10):

- The WDGA bit is set (watchdog enabled)
- The T6 bit is set to prevent generating an immediate reset
- The T[5:0] bits contain the number of increments which represents the time delay before the watchdog produces a reset.

Table 10.Watchdog Timing (f_{CPU} = 8 MHz)

	CR Register initial value	WDG timeout period (ms)
Max	FFh	524.288
Min	C0h	8.192

Figure 23. Watchdog Block Diagram

WATCHDOG TIMER (Cont'd)

9.1.4 Software Watchdog Option

If Software Watchdog is selected by option byte, the watchdog is disabled following a reset. Once activated it cannot be disabled, except by a reset.

The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is cleared).

9.1.5 Hardware Watchdog Option

If Hardware Watchdog is selected by option byte, the watchdog is always active and the WDGA bit in the CR is not used.

9.1.6 Low Power Modes

WAIT Instruction

No effect on Watchdog.

HALT Instruction

Halt mode can be used when the watchdog is enabled. When the oscillator is stopped, the WDG stops counting and is no longer able to generate a reset until the microcontroller receives an external interrupt or a reset.

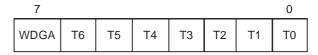
If an external interrupt is received, the WDG restarts counting after 514 CPU clocks. In the case of the Software Watchdog option, if a reset is generated, the WDG is disabled (reset state).

Recommendations

- Make sure that an external event is available to wake up the microcontroller from Halt mode.
- Before executing the HALT instruction, refresh the WDG counter, to avoid an unexpected WDG reset immediately after waking up the microcontroller.
- When using an external interrupt to wake up the microcontroller, reinitialize the corresponding I/O as Input before executing the HALT instruction. The main reason for this is that the I/O may be wrongly configured due to external interference or by an unforeseen logical condition.
- The opcode for the HALT instruction is 0x8E. To avoid an unexpected HALT instruction due to a

program counter failure, it is advised to clear all occurrences of the data value 0x8E from memory. For example, avoid defining a constant in ROM with the value 0x8E.

As the HALT instruction clears the I bit in the CC register to allow interrupts, the user may choose to clear all pending interrupt bits before executing the HALT instruction. This avoids entering other peripheral interrupt routines after executing the external interrupt routine corresponding to the wake-up event (reset or external interrupt).


9.1.7 Interrupts

None.

9.1.8 Register Description CONTROL REGISTER (CR)

Read/Write

Reset Value: 0111 1111 (7Fh)

Bit 7 = **WDGA** Activation bit.

This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the watchdog can generate a reset.

0: Watchdog disabled

1: Watchdog enabled

Note: This bit is not used if the hardware watchdog option is enabled by option byte.

Bit 6:0 = T[6:0] 7-bit timer (MSB to LSB).

These bits contain the decremented value. A reset is produced when it rolls over from 40h to 3Fh (T6 becomes cleared).

WATCHDOG TIMER (Cont'd)

Table 11. Watchdog Timer Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
0Dh	WDGCR	WDGA	T6	T5	T4	T3	T2	T1	T0
	Reset Value	0	1	1	1	1	1	1	1

9.2 TIMEBASE UNIT (TBU)

9.2.1 Introduction

The Timebase unit (TBU) can be used to generate periodic interrupts.

9.2.2 Main Features

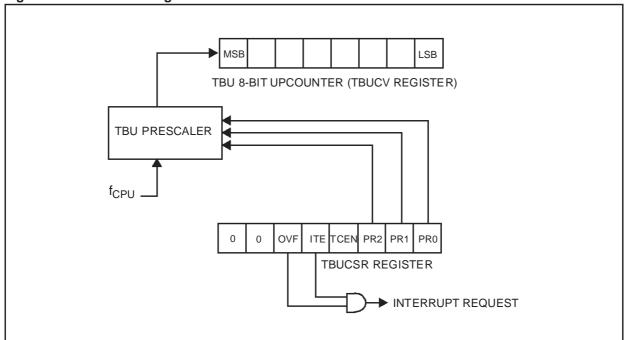
- 8-bit upcounter
- Programmable prescaler
- Period between interrupts: max. 8.1ms (at 8 MHz f_{CPU})
- Maskable interrupt

9.2.3 Functional Description

The TBU operates as a free-running upcounter.

When the TCEN bit in the TBUCSR register is set by software, counting starts at the current value of the TBUCV register. The TBUCV register is incremented at the clock rate output from the prescaler selected by programming the PR[2:0] bits in the TBUCSR register. When the counter rolls over from FFh to 00h, the OVF bit is set and an interrupt request is generated if ITE is set.

The user can write a value at any time in the TBUCV register.


9.2.4 Programming Example

In this example, timer is required to generate an interrupt after a delay of 1 ms.

Assuming that f_{CPU} is 8 MHz and a prescaler division factor of 256 will be programmed using the PR[2:0] bits in the TBUCSR register, 1 ms = 32 TBU timer ticks.

In this case, the initial value to be loaded in the TBUCV must be (256-32) = 224 (E0h).

Figure 24. TBU Block Diagram

TIMEBASE UNIT (Cont'd)

9.2.5 Low Power Modes

Mode	Description
WAIT	No effect on TBU
HALT	TBU halted.

9.2.6 Interrupts

Interrupt Event	Event Flag	Enable Control Bit	Exit from Wait	Exit from Halt
Counter Over- flow Event	OVF	ITE	Yes	No

Note: The OVF interrupt event is connected to an interrupt vector (see Interrupts chapter). It generates an interrupt if the ITE bit is set in the TBUCSR register and the I-bit in the CC register is reset (RIM instruction).

9.2.7 Register Description

TBU COUNTER VALUE REGISTER (TBUCV)

Read/Write

Reset Value: 0000 0000 (00h)

7							0
CV7	CV6	CV5	CV4	CV3	CV2	CV1	CV0

Bit 7:0 = CV[7:0] Counter Value

This register contains the 8-bit counter value which can be read and written anytime by software. It is continuously incremented by hardware if TCEN=1.

TBU CONTROL/STATUS REGISTER (TBUCSR)

Read/Write

Reset Value: 0000 0000 (00h)

7							0
0	0	OVF	ITE	TCEN	PR2	PR1	PR0

Bit 7:6 = Reserved must be kept cleared.

Bit 5 = **OVF** Overflow Flag

This bit is set only by hardware, when the counter value rolls over from FFh to 00h. It is cleared by software reading the TBUCSR register. Writing to this bit does not change the bit value.

0: No overflow

1: Counter overflow

Bit 4 = **ITE** Interrupt enabled.

This bit is set and cleared by software.

0: Overflow interrupt disabled

1: Overflow interrupt enabled. An interrupt request is generated when OVF=1.

Bit 3 = **TCEN** TBU Enable.

This bit is set and cleared by software.

0: TBU counter is frozen and the prescaler is reset.

1: TBU counter and prescaler running.

Bit 2:0 = PR[2:0] Prescaler Selection

These bits are set and cleared by software to select the prescaling factor.

PR2	PR1	PR0	Prescaler Division Factor
0	0	0	2
0	0	1	4
0	1	1	8
1	0	0	16
1	0	1	32
1	0	1	64
1	1	0	128
1	1	1	256

TIMEBASE UNIT (Cont'd)

Table 12. TBU Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
0036h	TBUCV Reset Value	CV7 0	CV6 0	CV5 0	CV4 0	CV3	CV2 0	CV1 0	CV0 0
0037h	TBUSR Reset Value	- 0	- 0	OVF 0	ITE 0	TCEN 0	PR2 0	PR1 0	PR0 0

9.3 USB INTERFACE (USB)

9.3.1 Introduction

The USB Interface implements a low-speed function interface between the USB and the ST7 microcontroller. It is a highly integrated circuit which includes the transceiver, 3.3 voltage regulator, SIE and DMA. No external components are needed apart from the external pull-up on USBDM for low speed recognition by the USB host. The use of DMA architecture allows the endpoint definition to be completely flexible. Endpoints can be configured by software as in or out.

9.3.2 Main Features

- USB Specification Version 1.1 Compliant
- Supports Low-Speed USB Protocol
- Two or Three Endpoints (including default one) depending on the device (see device feature list and register map)
- CRC generation/checking, NRZI encoding/ decoding and bit-stuffing
- USB Suspend/Resume operations
- DMA Data transfers
- On-Chip 3.3V Regulator
- On-Chip USB Transceiver

9.3.3 Functional Description

The block diagram in Figure 25, gives an overview of the USB interface hardware.

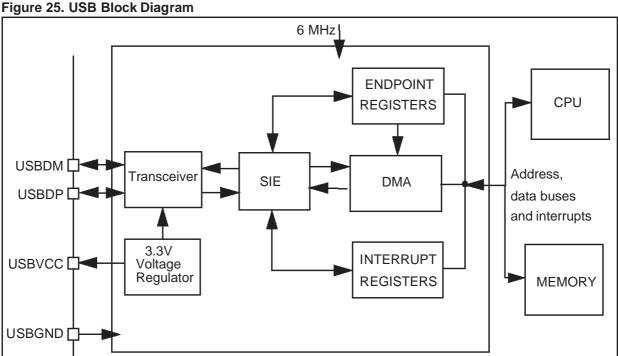
For general information on the USB, refer to the "Universal Serial Bus Specifications" document available at http://:www.usb.org.

Serial Interface Engine

The SIE (Serial Interface Engine) interfaces with the USB, via the transceiver.

The SIE processes tokens, handles data transmission/reception, and handshaking as required by the USB standard. It also performs frame formatting, including CRC generation and checking.

Endpoints


The Endpoint registers indicate if the microcontroller is ready to transmit/receive, and how many bytes need to be transmitted.

DMA

When a token for a valid Endpoint is recognized by the USB interface, the related data transfer takes place, using DMA. At the end of the transaction, an interrupt is generated.

Interrupts

By reading the Interrupt Status register, application software can know which USB event has occurred.

USB INTERFACE (Cont'd) 9.3.4 Register Description DMA ADDRESS REGISTER (DMAR)

Read / Write

Reset Value: Undefined

7							0
DA15	DA14	DA13	DA12	DA11	DA10	DA9	DA8

Bits 7:0=**DA[15:8]** *DMA* address bits 15-8. Software must write the start address of the DMA memory area whose most significant bits are given by DA15-DA6. The remaining 6 address bits are set by hardware. See the description of the IDR register and Figure 26.

INTERRUPT/DMA REGISTER (IDR)

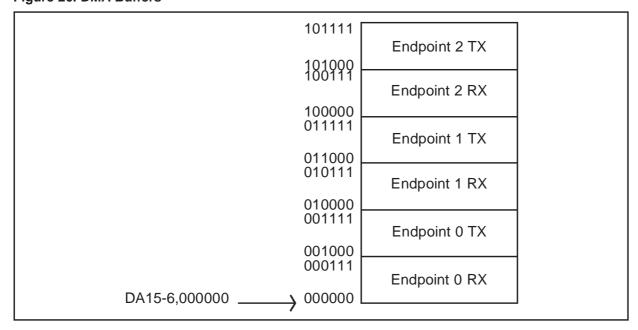
Read / Write

Reset Value: xxxx 0000 (x0h)

Bits 7:6 = **DA[7:6]** *DMA address bits* 7-6. Software must reset these bits. See the description of the DMAR register and Figure 26.

Bits 5:4 = **EP[1:0]** *Endpoint number* (read-only). These bits identify the endpoint which required attention.

00: Endpoint 0 01: Endpoint 1


10: Endpoint 2

When a CTR interrupt occurs (see register ISTR) the software should read the EP bits to identify the endpoint which has sent or received a packet.

Bits 3:0 = **CNT[3:0]** *Byte count* (read only). This field shows how many data bytes have been received during the last data reception.

Note: Not valid for data transmission.

Figure 26. DMA Buffers

USB INTERFACE (Cont'd) PID REGISTER (PIDR)

Read only

Reset Value: xx00 0000 (x0h)

7							0
TP3	TP2	0	0	0	RX_ SEZ	RXD	0

Bits 7:6 = **TP[3:2]** *Token PID bits 3 & 2*. USB token PIDs are encoded in four bits. **TP[3:2]** correspond to the variable token PID bits 3 & 2. **Note:** PID bits 1 & 0 have a fixed value of 01. When a CTR interrupt occurs (see register ISTR) the software should read the TP3 and TP2 bits to retrieve the PID name of the token received. The USB standard defines TP bits as:

TP3	TP2	PID Name
0	0	OUT
1	0	IN
1	1	SETUP

Bits 5:3 Reserved. Forced by hardware to 0.

Bit 2 = **RX_SEZ** Received single-ended zero This bit indicates the status of the RX_SEZ transceiver output.

0: No SE0 (single-ended zero) state

1: USB lines are in SE0 (single-ended zero) state

Bit 1 = RXD Received data

0: No K-state

1: USB lines are in K-state

This bit indicates the status of the RXD transceiver output (differential receiver output).

Note: If the environment is noisy, the RX_SEZ and RXD bits can be used to secure the application. By interpreting the status, software can distinguish a valid End Suspend event from a spurious wake-up due to noise on the external USB line. A valid End Suspend is followed by a Resume or Reset sequence. A Resume is indicated by RXD=1, a Reset is indicated by RX_SEZ=1.

Bit 0 = Reserved. Forced by hardware to 0.

INTERRUPT STATUS REGISTER (ISTR)

Read / Write

Reset Value: 0000 0000 (00h)

7							0
SUSP	DOVR	CTR	ERR	IOVR	ESUSP	RESET	SOF

When an interrupt occurs these bits are set by hardware. Software must read them to determine the interrupt type and clear them after servicing. **Note:** These bits cannot be set by software.

Bit 7 = **SUSP** Suspend mode request.

This bit is set by hardware when a constant idle state is present on the bus line for more than 3 ms, indicating a suspend mode request from the USB bus. The suspend request check is active immediately after each USB reset event and its disabled by hardware when suspend mode is forced (FSUSP bit of CTLR register) until the end of resume sequence.

Bit 6 = **DOVR** *DMA over/underrun*.

This bit is set by hardware if the ST7 processor can't answer a DMA request in time.

0: No over/underrun detected

1: Over/underrun detected

Bit 5 = **CTR** Correct Transfer. This bit is set by hardware when a correct transfer operation is performed. The type of transfer can be determined by looking at bits TP3-TP2 in register PIDR. The Endpoint on which the transfer was made is identified by bits EP1-EP0 in register IDR.

0: No Correct Transfer detected

1: Correct Transfer detected

Note: A transfer where the device sent a NAK or STALL handshake is considered not correct (the host only sends ACK handshakes). A transfer is considered correct if there are no errors in the PID and CRC fields, if the DATAO/DATA1 PID is sent as expected, if there were no data overruns, bit stuffing or framing errors.

Bit 4 = ERR Error.

This bit is set by hardware whenever one of the errors listed below has occurred:

0: No error detected

1: Timeout, CRC, bit stuffing or nonstandard framing error detected

Bit 3 = **IOVR** Interrupt overrun.

This bit is set when hardware tries to set ERR, or SOF before they have been cleared by software.

0: No overrun detected

1: Overrun detected

Bit 2 = **ESUSP** *End* suspend mode.

This bit is set by hardware when, during suspend mode, activity is detected that wakes the USB interface up from suspend mode.

This interrupt is serviced by a specific vector, in order to wake up the ST7 from HALT mode.

0: No End Suspend detected

1: End Suspend detected

Bit 1 = **RESET** *USB* reset.

This bit is set by hardware when the USB reset sequence is detected on the bus.

0: No USB reset signal detected

1: USB reset signal detected

Note: The DADDR, EP0RA, EP0RB, EP1RA, EP1RB, EP2RA and EP2RB registers are reset by a USB reset.

Bit 0 = SOF Start of frame.

This bit is set by hardware when a low-speed SOF indication (keep-alive strobe) is seen on the USB bus. It is also issued at the end of a resume sequence.

0: No SOF signal detected

1: SOF signal detected

Note: To avoid spurious clearing of some bits, it is recommended to clear them using a load instruction where all bits which must not be altered are set, and all bits to be cleared are reset. Avoid readmodify-write instructions like AND , XOR..

INTERRUPT MASK REGISTER (IMR)

Read / Write

Reset Value: 0000 0000 (00h)

 7
 0

 SUS DOV RM
 CTR ERR IOVR SPM ETM
 RES SOF M

Bits 7:0 = These bits are mask bits for all interrupt condition bits included in the ISTR. Whenever one of the IMR bits is set, if the corresponding ISTR bit is set, and the I bit in the CC register is cleared, an interrupt request is generated. For an explanation

of each bit, please refer to the corresponding bit description in ISTR.

CONTROL REGISTER (CTLR)

Read / Write

Reset Value: 0000 0110 (06h)

Bits 7:4 = Reserved. Forced by hardware to 0.

Bit 3 = **RESUME** Resume.

This bit is set by software to wake-up the Host when the ST7 is in suspend mode.

0: Resume signal not forced

1: Resume signal forced on the USB bus.

Software should clear this bit after the appropriate delay.

Bit 2 = **PDWN** Power down.

This bit is set by software to turn off the 3.3V onchip voltage regulator that supplies the external pull-up resistor and the transceiver.

0: Voltage regulator on

1: Voltage regulator off

Note: After turning on the voltage regulator, software should allow at least 3 µs for stabilisation of the power supply before using the USB interface.

Bit 1 = **FSUSP** Force suspend mode.

This bit is set by software to enter Suspend mode. The ST7 should also be halted allowing at least 600 ns before issuing the HALT instruction.

0: Suspend mode inactive

1: Suspend mode active

When the hardware detects USB activity, it resets this bit (it can also be reset by software).

Bit 0 = FRES Force reset.

This bit is set by software to force a reset of the USB interface, just as if a RESET sequence came from the USB.

0: Reset not forced

1: USB interface reset forced.

The USB is held in RESET state until software clears this bit, at which point a "USB-RESET" interrupt will be generated if enabled.

DEVICE ADDRESS REGISTER (DADDR)

Read / Write

Reset Value: 0000 0000 (00h)

7							0
0	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0

Bit 7 = Reserved. Forced by hardware to 0.

Bits 6:0 = **ADD[6:0]** Device address, 7 bits.

Software must write into this register the address sent by the host during enumeration.

Note: This register is also reset when a USB reset is received from the USB bus or forced through bit FRES in the CTLR register.

ENDPOINT n REGISTER A (EPnRA)

Read / Write

Reset Value: 0000 xxxx (0xh)

7							0
ST_ OUT	DTOG	STAT TX1			ТВС	ТВС	ТВС
001	-17	-1X1	_170	3		1	0

These registers (**EP0RA**, **EP1RA** and **EP2RA**) are used for controlling data transmission. They are also reset by the USB bus reset.

Note: Endpoint 2 and the EP2RA register are not available on some devices (see device feature list and register map).

Bit 7 = **ST_OUT** Status out.

This bit is set by software to indicate that a status out packet is expected: in this case, all nonzero OUT data transfers on the endpoint are STALLed instead of being ACKed. When ST_OUT is reset, OUT transactions can have any number of bytes, as needed.

Bit 6 = **DTOG_TX** Data Toggle, for transmission transfers.

It contains the required value of the toggle bit (0=DATA0, 1=DATA1) for the next transmitted data packet. This bit is set by hardware at the reception of a SETUP PID. DTOG_TX toggles only when the transmitter has received the ACK signal from the USB host. DTOG_TX and also DTOG_RX (see EPnRB) are normally updated by hardware, at the receipt of a relevant PID. They can be also written by software.

Bits 5:4 = **STAT_TX[1:0]** Status bits, for transmission transfers.

These bits contain the information about the endpoint status, which are listed below:

STAT_TX1	STAT_TX0	Meaning
0	0	DISABLED: transmission transfers cannot be executed.
0	1	STALL : the endpoint is stalled and all transmission requests result in a STALL handshake.
1	0	NAK : the endpoint is naked and all transmission requests result in a NAK handshake.
1	1	VALID : this endpoint is enabled for transmission.

These bits are written by software. Hardware sets the STAT_TX bits to NAK when a correct transfer has occurred (CTR=1) related to a IN or SETUP transaction addressed to this endpoint; this allows the software to prepare the next set of data to be transmitted.

Bits 3:0 = **TBC[3:0]** *Transmit byte count for End-*point n.

Before transmission, after filling the transmit buffer, software must write in the TBC field the transmit packet size expressed in bytes (in the range 0-8).

Warning: Any value outside the range 0-8 will-induce undesired effects (such as continuous data transmission).

ENDPOINT n REGISTER B (EPnRB)

Read / Write

Reset Value: 0000 xxxx (0xh)

7							0
CTRL	DTOG _RX	STAT _RX1	STAT _RX0	EA3	EA2	EA1	EA0

These registers (**EP1RB** and **EP2RB**) are used for controlling data reception on Endpoints 1 and 2. They are also reset by the USB bus reset.

Note: Endpoint 2 and the EP2RB register are not available on some devices (see device feature list and register map).

Bit 7 = **CTRL** Control. This bit should be 0.

Note: If this bit is 1, the Endpoint is a control endpoint. (Endpoint 0 is always a control Endpoint, but it is possible to have more than one control Endpoint).

Bit 6 = DTOG_RX Data toggle, for reception transfers.

It contains the expected value of the toggle bit (0=DATA0, 1=DATA1) for the next data packet. This bit is cleared by hardware in the first stage (Setup Stage) of a control transfer (SETUP transactions start always with DATA0 PID). The receiver toggles DTOG_RX only if it receives a correct data packet and the packet's data PID matches the receiver sequence bit.

Bits 5:4 = **STAT_RX [1:0]** Status bits, for reception transfers.

These bits contain the information about the endpoint status, which are listed below:

STAT_RX1	STAT_RX0	Meaning
0		DISABLED : reception transfers cannot be executed.
0		STALL: the endpoint is stalled and all reception requests result in a STALL handshake.

STAT_RX1	STAT_RX0	Meaning
1	0	NAK : the endpoint is naked and all reception requests result in a NAK handshake.
1	1	VALID : this endpoint is enabled for reception.

These bits are written by software. Hardware sets the STAT_RX bits to NAK when a correct transfer has occurred (CTR=1) related to an OUT or SET-UP transaction addressed to this endpoint, so the software has the time to elaborate the received data before acknowledging a new transaction.

Bits 3:0 = **EA[3:0]** Endpoint address.

Software must write in this field the 4-bit address used to identify the transactions directed to this endpoint. Usually EP1RB contains "0001" and EP2RB contains "0010".

ENDPOINT 0 REGISTER B (EP0RB)

Read / Write

Reset Value: 1000 0000 (80h)

7						0
1	DTOG RX	STAT RX0	0	0	0	0

This register is used for controlling data reception on Endpoint 0. It is also reset by the USB bus reset

Bit 7 = Forced by hardware to 1.

Bits 6:4 = Refer to the EPnRB register for a description of these bits.

Bits 3:0 = Forced by hardware to 0.

9.3.5 Programming Considerations

The interaction between the USB interface and the application program is described below. Apart from system reset, action is always initiated by the USB interface, driven by one of the USB events associated with the Interrupt Status Register (ISTR) bits.

9.3.5.1 Initializing the Registers

At system reset, the software must initialize all registers to enable the USB interface to properly generate interrupts and DMA requests.

- Initialize the DMAR, IDR, and IMR registers (choice of enabled interrupts, address of DMA buffers). Refer the paragraph titled initializing the DMA Buffers.
- Initialize the EP0RA and EP0RB registers to enable accesses to address 0 and endpoint 0 to support USB enumeration. Refer to the paragraph titled Endpoint Initialization.
- 3. When addresses are received through this channel, update the content of the DADDR.
- 4. If needed, write the endpoint numbers in the EA fields in the EP1RB and EP2RB register.

9.3.5.2 Initializing DMA buffers

The DMA buffers are a contiguous zone of memory whose maximum size is 48 bytes. They can be placed anywhere in the memory space to enable the reception of messages. The 10 most significant bits of the start of this memory area are specified by bits DA15-DA6 in registers DMAR and IDR, the remaining bits are 0. The memory map is shown in Figure 26.

Each buffer is filled starting from the bottom (last 3 address bits=000) up.

9.3.5.3 Endpoint Initialization

To be ready to receive:

Set STAT_RX to VALID (11b) in EP0RB to enable reception.

To be ready to transmit:

- 1. Write the data in the DMA transmit buffer.
- 2. In register EPnRA, specify the number of bytes to be transmitted in the TBC field
- Enable the endpoint by setting the STAT_TX bits to VALID (11b) in EPnRA.

Note: Once transmission and/or reception are enabled, registers EPnRA and/or EPnRB (respectively) must not be modified by software, as the hardware can change their value on the fly.

When the operation is completed, they can be accessed again to enable a new operation.

9.3.5.4 Interrupt Handling

Start of Frame (SOF)

The interrupt service routine may monitor the SOF events for a 1 ms synchronization event to the USB bus. This interrupt is generated at the end of a resume sequence and can also be used to detect this event.

USB Reset (RESET)

When this event occurs, the DADDR register is reset, and communication is disabled in all endpoint registers (the USB interface will not respond to any packet). Software is responsible for reenabling endpoint 0 within 10 ms of the end of reset. To do this, set the STAT_RX bits in the EP0RB register to VALID.

Suspend (SUSP)

The CPU is warned about the lack of bus activity for more than 3 ms, which is a suspend request. The software should set the USB interface to suspend mode and execute an ST7 HALT instruction to meet the USB-specified power constraints.

End Suspend (ESUSP)

The CPU is alerted by activity on the USB, which causes an ESUSP interrupt. The ST7 automatically terminates HALT mode.

Correct Transfer (CTR)

When this event occurs, the hardware automatically sets the STAT_TX or STAT_RX to NAK.
 Note: Every valid endpoint is NAKed until software clears the CTR bit in the ISTR register, independently of the endpoint number addressed by the transfer which generated the CTR interrupt.

Note: If the event triggering the CTR interrupt is a SETUP transaction, both STAT_TX and STAT_RX are set to NAK.

2. Read the PIDR to obtain the token and the IDR to get the endpoint number related to the last transfer.

Note: When a CTR interrupt occurs, the TP3-TP2 bits in the PIDR register and EP1-EP0 bits in the IDR register stay unchanged until the CTR bit in the ISTR register is cleared.

3. Clear the CTR bit in the ISTR register.

Table 13. USB Register Map and Reset Values

Address (Hex.)	Register Name	7	6	5	4	3	2	1	0
25	PIDR	TP3	TP2	0	0	0	RX_SEZ	RXD	0
20	Reset Value	Х	Х	0	0	0	0	0	0
26	DMAR	DA15	DA14	DA13	DA12	DA11	DA10	DA9	DA8
	Reset Value	Х	Х	Х	Х	Х	Х	Х	Х
27	IDR	DA7	DA6	EP1	EP0	CNT3	CNT2	CNT1	CNT0
21	Reset Value	Х	Х	Х	Х	0	0	0	0
28	ISTR	SUSP	DOVR	CTR	ERR	IOVR	ESUSP	RESET	SOF
20	Reset Value	0	0	0	0	0	0	0	0
29	IMR	SUSPM	DOVRM	CTRM	ERRM	IOVRM	ESUSPM	RESETM	SOFM
	Reset Value	0	0	0	0	0	0	0	0
2A	CTLR	0	0	0	0	RESUME	PDWN	FSUSP	FRES
2/1	Reset Value	0	0	0	0	0	1	1	0
2B	DADDR	0	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
25	Reset Value	0	0	0	0	0	0	0	0
2C	EP0RA	ST_OUT	DTOG_TX	STAT_TX1	STAT_TX0	TBC3	TBC2	TBC1	TBC0
20	Reset Value	0	0	0	0	Х	Х	Х	Х
2D	EP0RB	1	DTOG_RX	STAT_RX1	STAT_RX0	0	0	0	0
20	Reset Value	1	0	0	0	0	0	0	0
2E	EP1RA	ST_OUT	DTOG_TX	STAT_TX1	STAT_TX0	TBC3	TBC2	TBC1	TBC0
	Reset Value	0	0	0	0	Х	Х	Х	Х
2F	EP1RB	CTRL	DTOG_RX	STAT_RX1	STAT_RX0	EA3	EA2	EA1	EA0
21	Reset Value	0	0	0	0	Х	Х	Х	Х
30	EP2RA	ST_OUT	DTOG_TX	STAT_TX1	STAT_TX0	TBC3	TBC2	TBC1	TBC0
30	Reset Value	0	0	0	0	Х	Х	Х	Х
31	EP2RB	CTRL	DTOG_RX	STAT_RX1	STAT_RX0	EA3	EA2	EA1	EA0
31	Reset Value	0	0	0	0	х	Х	Х	Х

10 ELECTRICAL CHARACTERISTICS

10.1 PARAMETER CONDITIONS

Unless otherwise specified, all voltages are referred to V_{SS} .

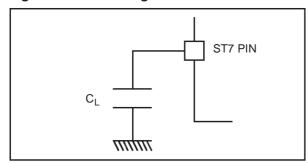
10.1.1 Minimum and Maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at T_A =25°C and T_A = T_A max (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

10.1.2 Typical values

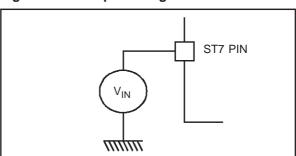
Unless otherwise specified, typical data are based on T_A =25°C, V_{DD} =5V. They are given only as design guidelines and are not tested.


10.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

10.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 27.


Figure 27. Pin loading conditions

10.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 28.

Figure 28. Pin input voltage

10.2 ABSOLUTE MAXIMUM RATINGS

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these condi-

tions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

10.2.1 Voltage Characteristics

Symbol	Ratings	Maximum value	Unit
V _{DD} - V _{SS}	Supply voltage	6.0	
V _{IN} 1) & 2)	Input voltage on true open drain pin	V _{SS} -0.3 to 6.0	V
VIN 7	Input voltage on any pin	V_{SS} -0.3 to V_{DD} +0.3	
V _{ESD(HBM)}	Electro-static discharge voltage (Human Body Model)	See "Absolute Electrica on page 55.	I Sensitivity"

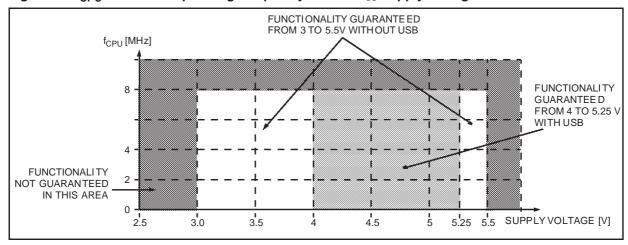
10.2.2 Current Characteristics

Symbol	Ratings	Maximum value	Unit
I _{VDD}	Total current into V _{DD} power lines (source) 3)	80	
I _{VSS}	Total current out of V _{SS} ground lines (sink) 3)	80	
	Output current sunk by any standard I/O and control pin	25	
I _{IO}	Output current sunk by any high sink I/O pin	50	
	Output current source by any I/Os and control pin	- 25	mA
	Injected current on V _{PP} pin	75	IIIA
I _{INJ(PIN)} 2) & 4)	Injected current on RESET pin	± 5	
'INJ(PIN)	Injected current on OSCIN and OSCOUT pins	± 5	
	Injected current on any other pin 5) & 6)	± 5	
ΣΙ _{ΙΝJ(PIN)} 2)	Total injected current (sum of all I/O and control pins) 5)	± 20	

10.2.3 Thermal Characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
T _J	Maximum junction temperature	175	°C

Notes:


- 1. Directly connecting the $\overline{\text{RESET}}$ and I/O pins to V_{DD} or V_{SS} could damage the device if an unintentional internal reset is generated or an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: $4.7 \text{k}\Omega$ for RESET, $10 \text{k}\Omega$ for I/Os). Unused I/O pins must be tied in the same way to V_{DD} or V_{SS} according to their reset configuration.
- 2. When the current limitation is not possible, the V_{IN} absolute maximum rating must be respected, otherwise refer to $I_{INJ(PIN)}$ specification. A positive injection is induced by $V_{IN} > V_{DD}$ while a negative injection is induced by $V_{IN} < V_{SS}$.
- 3. All power (V_{DD}) and ground (V_{SS}) lines must always be connected to the external supply.
- 4. Negative injection disturbs the analog performance of the device. In particular, it induces leakage currents throughout the device including the analog inputs. To avoid undesirable effects on the analog functions, care must be taken:
- Analog input pins must have a negative injection less than 0.8 mA (assuming that the impedance of the analog voltage is lower than the specified limits)
- Pure digital pins must have a negative injection less than 1.6mA. In addition, it is recommended to inject the current as far as possible from the analog input pins.
- 5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterisation with $\Sigma I_{INJ(PIN)}$ maximum current injection on four I/O port pins of the device.
- 6. True open drain I/O port pins do not accept positive injection.

10.3 OPERATING CONDITIONS

10.3.1 General Operating Conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
	Operating Supply Voltage (USB Full Spec.)	f _{CPU} = 8 MHz	4	5	5.25		
V _{DD}	Operating Supply Voltage (No USB)	f _{CPU} = 8 MHz	4	5	5.5	V	
	Operating Supply Voltage (No USB, No LVD)	f _{CPU} = TBD	TBD	5	5.5		
f	Operating frequency	f _{OSC} = 12MHz			8	MHz	
f _{CPU}	Coporating modulation	f _{OSC} = 6MHz			4	IVIIIZ	
T _A	Ambient temperature range		0		70	°C	

Figure 29. f_{CPU} Maximum Operating Frequency Versus V_{DD} Supply Voltage

OPERATING CONDITIONS (Cont'd)

10.3.2 Operating Conditions with Low Voltage Detector (LVD)

Subject to general operating conditions for V_{DD} , f_{CPU} , and T_A . Refer to Figure 10 on page 17.

Symbol	Parameter	Conditions	Min	Typ ¹⁾	Max	Unit
V _{IT+}	Low Voltage Reset Threshold (V _{DD} rising)	V _{DD} Max. Variation 50V/ms	3.75	3.85	3.95	V
V _{IT-}	Low Voltage Reset Threshold (V _{DD} falling)	V _{DD} Max. Variation 50V/ms	3.6	3.7	3.8	V
V _{hyst}	Hysteresis (V _{IT+} - V _{IT-})		120	150		mV
Vt _{POR}	V _{DD} rise time rate ²⁾		0.5		50	V/ms
t _{g(VDD)}	Filtered glitch delay on V _{DD} ¹⁾	Not detected by the LVD			40	ns

Notes:

- 1. Not tested, guaranteed by design.
- $2. \ The \ V_{DD} \ rise \ time \ rate \ condition \ is \ needed \ to \ insure \ a \ correct \ device \ power-on \ and \ LVD \ reset. \ Not \ tested \ in \ production.$

10.4 SUPPLY CURRENT CHARACTERISTICS

The following current consumption specified for the ST7 functional operating modes over temperature range does not take into account the clock source current consumption. To get the total device consumption, the two current values must be added (except for HALT mode for which the clock is stopped).

Symbol	Parameter	Conditio ns		Typ ¹⁾	Max	Unit
$\Delta I_{\text{DD}(\Delta Ta)}$	Supply current variation vs. temperature	DD 010			10	%
	CPU RUN mode		$f_{CPU} = 4 MHz$		TBD ²⁾	mA
	Of 6 Roll mode	·	f _{CPU} = 8 MHz	12	TBD ²⁾	ША
	CPU WAIT mode		f _{CPU} = 8 MHz		TBD ²⁾	mA
I _{DD}	CPU Slow mode	USB peripheral and LVD enabled	f_{OSC} = 6 MHz f_{CPU} = 500 kHz		TBD ⁵⁾	mA
	CPU HALT mode	with LVD		90	120 ³⁾	μΑ
	OI O TIME! Mode	without LVD		·	10 ³⁾	μΛ
	USB Suspend mode ⁴⁾			90	120	μΑ

- **Note 1:** Typical data are based on $T_A=25^{\circ}C$ and not tested in production
- **Note 2:** Oscillator and watchdog running. All others peripherals disabled.
- Note 3: USB Transceiver is powered down.
- Note 4: Low voltage reset function enabled.

CPU in HALT mode.

Current consumption of external pull-up (1.5Kohms to USBVCC) and pull-down (15Kohms to V_{SSA}) not included.

Note 5: Data based on characterization results, not tested in production.

Figure 30. Typ. I_{DD} in RUN at 4 and 8 MHz f_{CPU}

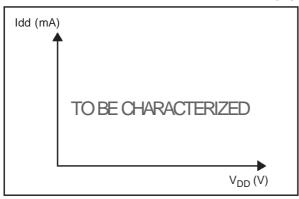
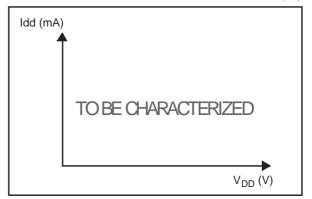



Figure 31. Typ. I_{DD} in WAIT at 4 and 8 MHz f_{CPU}

10.5 CLOCK AND TIMING CHARACTERISTICS

Subject to general operating conditions for V_{DD} , f_{CPU} , and T_A .

10.5.1 General Timings

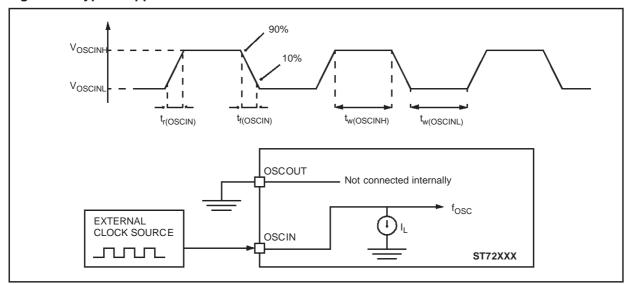
Symbol	Parameter	Conditions	Min	Typ ¹⁾	Max	Unit
t _{c(INST)} Instruction	Instruction cycle time	f OMILI-	2	3	12	t _{CPU}
	mstruction cycle time	f _{CPU} =8MHz	250	375	1500	ns
+	Interrupt reaction time ²⁾	f OMLI-	10		22	t _{CPU}
τ _{ν(IT)}	$t_{V(IT)} = \Delta t_{C(INST)} + 10 t_{CPU}$	f _{CPU} =8MHz	1.25		2.75	μs

^{1.} Data based on typical application software.

10.5.2 CONTROL TIMING CHARACTERISTICS

CONTRO	L TIMINGS	_	_				
Symbol	Parameter	Conditions		Value			
Symbol	Farameter	Conditions	Min	Тур.	Max	Unit	
f _{OSC}	Oscillator Frequency				12	MHz	
f_{CPU}	Operating Frequency				8	MHz	
+	External RESET		1.5			+	
t _{RL}	Input pulse Width		1.5			t _{CPU}	
t _{PORL}	Internal Power Reset Duration		514			t _{CPU}	
T_{RSTL}	Reset Pin Output Pulse Width		10			μs	
+	Watchdog Time out		65536		4194304	t _{CPU}	
t _{WDG}	Watchdog Time-out	f _{cpu} = 8MHz	8.192		524.288	ms	
t _{OXOV}	Crystal Oscillator Start-up Time		20	30	40	ms	
t _{DDR}	Power up rise time	from V _{DD} = 0 to 4V			100	ms	

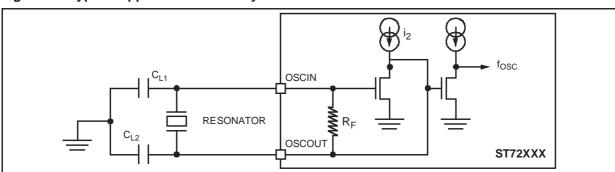
Note 1: The minimum period t_{ILIL} should not be less than the number of cycle times it takes to execute the interrupt service routine plus 21 cycles.


^{2.} Time measured between interrupt event and interrupt vector fetch. $\Delta t_{c(INST)}$ is the number of t_{CPU} cycles needed to finish the current instruction execution.

CLOCK AND TIMING CHARACTERISTICS (Cont'd)

10.5.3 External Clock Source

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OSCINH}	OSCIN input pin high level voltage		0.7xV _{DD}		V_{DD}	\/
V _{OSCINL}	OSCIN input pin low level voltage		V _{SS}		0.3xV _{DD}	V
$t_{w(OSCINH)} \\ t_{w(OSCINL)}$	OSCIN high or low time 1)	see Figure 32	15			ns
$t_{r(OSCIN)}$ $t_{f(OSCIN)}$	OSCIN rise or fall time ¹⁾				15	113
ΙL	OSCx Input leakage current	V _{SS} ≤V _{IN} ≤V _{DD}			±1	μΑ


Figure 32. Typical Application with an External Clock Source

Notes:

1. Data based on design simulation and/or technology characteristics, not tested in production.

Figure 33. Typical Application with a Crystal Resonator

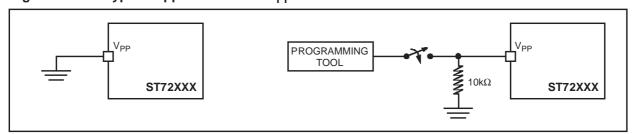
52/71

10.6 MEMORY CHARACTERISTICS

Subject to general operating conditions for $f_{\mbox{\footnotesize{CPU}}}$, and $T_{\mbox{\footnotesize{A}}}$ unless otherwise specified.

10.6.1 RAM and Hardware Registers

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{RM}	Data retention mode 1)	HALT mode (or RESET)	2.0			V


Note 1: Guaranteed by design. Not tested in production.

10.6.2 FLASH Memory

Operating Conditions: $f_{CPU} = 8 \text{ MHz}$.

DUAL VOL	TAGE FLASH MEMORY					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	Operating Frequency	Read mode			8	MHz
f _{CPU}	Operating Frequency	Write / Erase mode			8	IVIDZ
V _{PP}	Programming Voltage	4.0V <= V _{DD} <= 5.5V	11.4		12.6	V
I _{PP}	V _{PP} Current	Write / Erase			30	mA
t _{PROG}	Byte Programming Time			100	TBD	μs
	Sector Erasing Time			0.5	TBD	
t _{ERASE}	Device Erasing Time			2	10	sec
	Device Erasing Time	T _A =25°C			3	1
t _{VPP}	Internal V _{PP} Stabilization Time			10		μs
t _{RET}	Data Retention	T _A ≤ 55°C	20			years
N _{RW}	Write Erase Cycles		100			cycles

Figure 34. Two typical Applications with V_{PP} Pin¹⁾

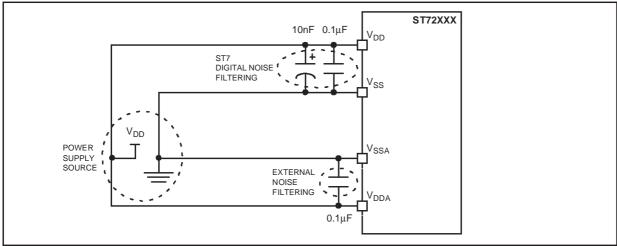
Note 1: When the ICP mode is not required by the application, V_{PP} pin must be tied to V_{SS} .

10.7 EMC CHARACTERISTICS

Susceptibility tests are performed on a sample basis during product characterization.

10.7.1 Functional EMS

(Electro Magnetic Susceptibility)


Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electro magnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electro-Static Discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard.

A device reset allows normal operations to be resumed.

Symbol	Parameter	Condition s	Neg 1)	Pos 1)	Unit
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} =5V, T_A =+25°C, f_{OSC} =8MHz conforms to IEC 1000-4-2	TBD	TBD	
V _{FFTB}	Fast transient voltage burst limits to be applied through 100pF on V _{DD} and V _{DD} pins to induce a functional disturbance	V _{DD} =5V, T _A =+25°C, f _{OSC} =8MHz conforms to IEC 1000-4-4	TBD	TBD	kV

Figure 35. EMC Recommended star network power supply connection ²⁾

Notes:

- 1. Data based on characterization results, not tested in production.
- 2. The suggested 10nF and $0.1\mu F$ decoupling capacitors on the power supply lines are proposed as a good price vs. EMC performance trade-off. They have to be put as close as possible to the device power supply pins. Other EMC recommendations are given in other sections (I/Os, RESET, OSCx pin characteristics).

57/

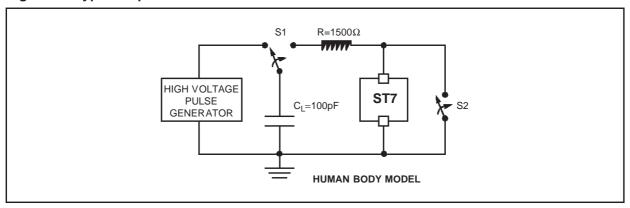
10.7.2 Absolute Electrical Sensitivity

Based on three different tests (ESD, LU and DLU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the AN1181 ST7 application note.

10.7.2.1 Electro-Static Discharge (ESD)

Electro-Static Discharges (1 positive then 1 negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends of the number of supply pins of the device (3 parts*(n+1) supply pin). The Human Body Model is simulated. This test conforms to the JESD22-A114A standard. See Figure 36 and the following test sequences

Human Body Model Test Sequence


- $-\ C_L$ is loaded through S1 by the HV pulse generator.
- S1 switches position from generator to R.

- A discharge from $\mbox{\rm C}_{L}$ through R (body resistance) to the ST7 occurs.
- S2 must be closed 10 to 100ms after the pulse delivery period to ensure the ST7 is not left in charge state. S2 must be opened at least 10ms prior to the delivery of the next pulse.

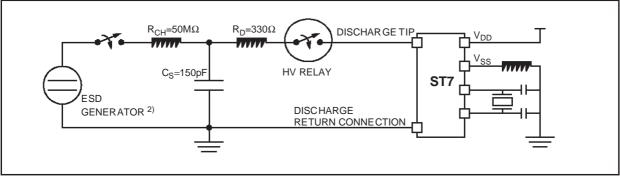
Absolute Maximum Ratings

Symbol	Ratings	Conditions	Maximum value 1)	Unit
V _{ESD(HBM)}	Electro-static discharge voltage (Human Body Model)	T _A =+25°C	2000	V

Figure 36. Typical Equivalent ESD Circuits

Notes:

1. Data based on characterization results, not tested in production.


10.7.2.2 Static and Dynamic Latch-Up

- LU: 3 complementary static tests are required on 10 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin), a current injection (applied to each input, output and configurable I/O pin) and a power supply switch sequence are performed on each sample. This test conforms to the EIA/ JESD 78 IC latch-up standard. For more details, refer to the AN1181 ST7 application note.
- DLU: Electro-Static Discharges (one positive then one negative test) are applied to each pin of 3 samples when the micro is running to assess the latch-up performance in dynamic mode. Power supplies are set to the typical values, the oscillator is connected as near as possible to the pins of the micro and the component is put in reset mode. This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards and is described in Figure 37. For more details, refer to the AN1181 ST7 application note.

Electrical Sensitivities

Symbol	Parameter	Conditions	Class 1)	
LU	Static latch-up class	T _A =+25°C	A	
DLU	Dynamic latch-up class	V_{DD} =5.5V, f_{OSC} =4MHz, T_A =+25°C	А	

Figure 37. Simplified Diagram of the ESD Generator for DLU

Notes:

- 1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B Class strictly covers all the JEDEC criteria (international standard).
- 2. Schaffner NSG435 with a pointed test finger.

10.7.3 ESD Pin Protection Strategy

To protect an integrated circuit against Electro-Static Discharge the stress must be controlled to prevent degradation or destruction of the circuit elements. The stress generally affects the circuit elements which are connected to the pads but can also affect the internal devices when the supply pads receive the stress. The elements to be protected must not receive excessive current, voltage or heating within their structure.

An ESD network combines the different input and output ESD protections. This network works, by allowing safe discharge paths for the pins subjected to ESD stress. Two critical ESD stress cases are presented in Figure 38 and Figure 39 for standard pins and in Figure 40 and Figure 41 for true open drain pins.

Standard Pin Protection

To protect the output structure the following elements are added:

- A diode to $V_{\mbox{\scriptsize DD}}$ (3a) and a diode from $V_{\mbox{\scriptsize SS}}$ (3b)
- A protection device between V_{DD} and V_{SS} (4) To protect the input structure the following elements are added:
 - A resistor in series with the pad (1)
 - A diode to V_{DD} (2a) and a diode from V_{SS} (2b)
 - A protection device between V_{DD} and V_{SS} (4)

Figure 38. Positive Stress on a Standard Pad vs. V_{SS}

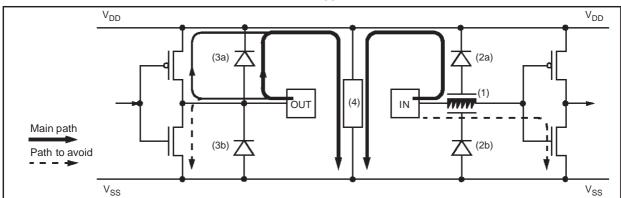
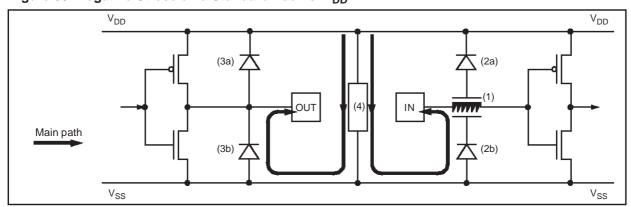



Figure 39. Negative Stress on a Standard Pad vs. V_{DD}

True Open Drain Pin Protection

The centralized protection (4) is not involved in the discharge of the ESD stresses applied to true open drain pads due to the fact that a P-Buffer and diode to V_{DD} are not implemented. An additional local protection between the pad and V_{SS} (5a & 5b) is implemented to completely absorb the positive ESD discharge.

Multisupply Configuration

When several types of ground (V_{SS} , V_{SSA} , ...) and power supply (V_{DD} , V_{DDA} , ...) are available for any reason (better noise immunity...), the structure shown in Figure 42 is implemented to protect the device against ESD.

Figure 40. Positive Stress on a True Open Drain Pad vs. V_{SS}

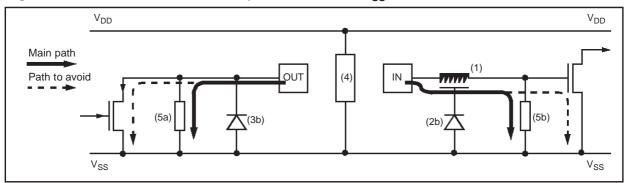


Figure 41. Negative Stress on a True Open Drain Pad vs. V_{DD}

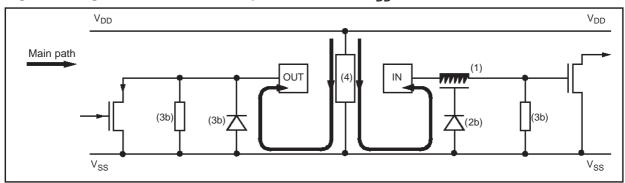
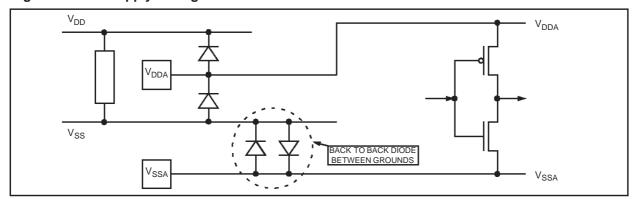



Figure 42. Multisupply Configuration

10.8 I/O PORT PIN CHARACTERISTICS

10.8.1 General Characteristics

Subject to general operating conditions for V_{DD} , f_{CPU} , and T_A unless otherwise specified.

Symbol	Parameter	Conditions		Min	Typ ¹⁾	Max	Unit
V _{IL}	Input low level voltage					0.3xV _{DD}	V
V _{IH}	Input high level voltage			0.7xV _{DD}			V
V _{hys}	Schmitt trigger voltage hysteresis				400		mV
ΙĹ	Input leakage current	V _{SS} \leq V _{IN} \leq V _{DD}				±1	
I _S	Static current consumption 2)	Floating input mode				200	μΑ
R _{PU}	Weak pull-up equivalent resistor 3)	V _{IN} =V _{SS}	V _{IN} =V _{SS} V _{DD} =5V		80	120	kΩ
C _{IO}	I/O pin capacitance				5		pF
t _{f(IO)out}	Output high to low level fall time	C _L =50pF Between 10% and 90%			25		ns
t _{r(IO)out}	Output low to high level rise time				25		115
t _{w(IT)in}	External interrupt pulse time 4)			1			t _{CPU}

Figure 43. Two typical Applications with unused I/O Pin

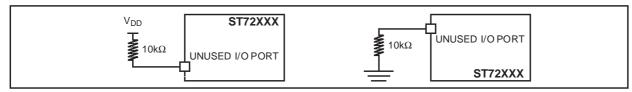


Figure 44. Typical I_{PU} vs. V_{DD} with $V_{IN}=V_{SS}$

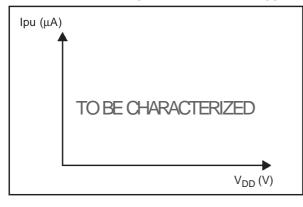
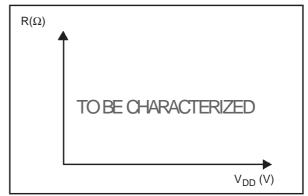



Figure 45. Typical R_{PU} vs. V_{DD} with V_{IN} = V_{SS}

Notes:

- 1. Unless otherwise specified, typical data are based on T_A =25°C and V_{DD} =5V, not tested in production.
- 2. Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor (see Figure 43). Data based on design simulation and/or technology characteristics, not tested in production.
- 3. The R_{PU} pull-up equivalent resistor is based on a resistive transistor (corresponding I_{PU} current characteristics described in Figure 44). This data is based on characterization results.
- 4. To generate an external interrupt, a minimum pulse width has to be applied on an I/O port pin configured as an external interrupt source.

I/O PORT PIN CHARACTERISTICS (Cont'd)

10.8.2 Output Driving Current

Subject to general operating condition for V_{DD}, f_{CPU}, and T_A unless otherwise specified.

Symbol	Parameter	Cond	litio ns	Min	Max	Unit
	Output low level voltage for a standard I/O pin		I _{IO} =+5mA		1.3	
V _{OL} 1)	when up to 8 pins are sunk at same time (see Figure 46))=5V	I _{IO} =+2mA		0.4	
VOL /	Output low level voltage for a high sink I/O pin		I _{IO} =+20mA		1.3	.,,
	when up to4 pins are sunk at same time (see Figure 47)		I _{IO} =+8mA		0.4	
V 2)	Output high level voltage for an I/O pin		I _{IO} =-5mA	V _{DD} -2.0		
V _{OH} ²⁾	when up to 8 pins are sourced at same time (see Figure 48)		I _{IO} =-2mA	V _{DD} -0.8		

Figure 46. Typical V_{OL} at V_{DD}=5V (standard)

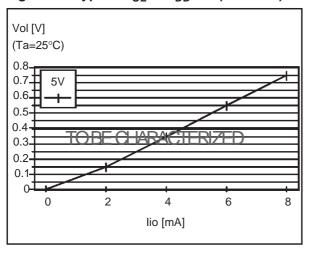


Figure 48. Typical V_{DD}-V_{OH} at V_{DD}=5V

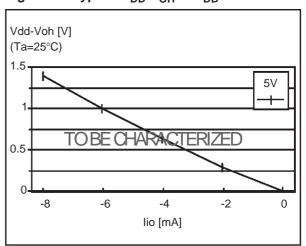
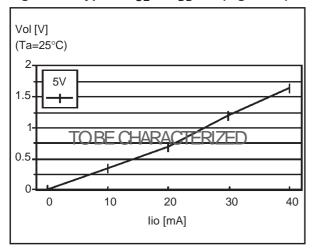



Figure 47. Typical V_{OL} at V_{DD}=5V (high-sink)

Notes:

- 1. The I_{IO} current sunk must always respect the absolute maximum rating specified in Section 10.2 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS} .
- 2. The I_{IO} current sourced must always respect the absolute maximum rating specified in Section 10.2 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD} . True open drain I/O pins does not have V_{OH} .

I/O PORT PIN CHARACTERISTICS (Cont'd)

Figure 49. Typical V_{OL} vs. V_{DD} (standard I/Os)



Figure 50. Typical V_{OL} vs. V_{DD} (high-sink I/Os)

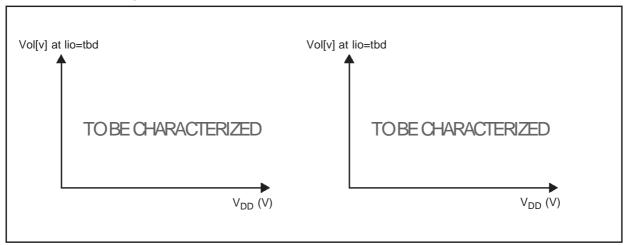
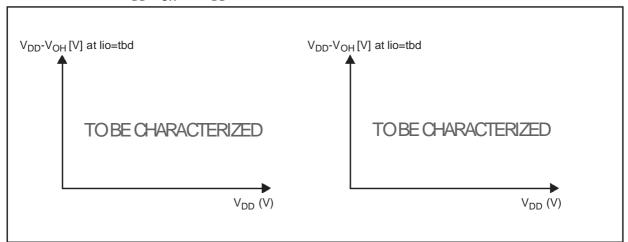



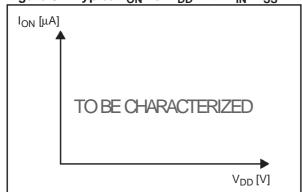
Figure 51. Typical V_{DD} - V_{OH} vs. V_{DD}

10.9 CONTROL PIN CHARACTERISTICS

10.9.1 Asynchronous RESET Pin

Subject to general operating conditions for V_{DD} , $f_{CP\ddot{U}}$, and T_A unless otherwise specified.

Symbol	Parameter	Conditions		Min	Typ ¹⁾	Max	Unit
V _{IH}	Input High Level Voltage			0.7xV _{DD}		V_{DD}	V
V_{IL}	Input Low Voltage			V _{SS}		0.3xV _{DD}	V
V_{hys}	Schmitt trigger voltage hysteresis 3)				400		mV
V _{OL}	Output low level voltage 4)	V _{DD} =5V	I _{IO} =TBD			TBD	V
V OL	(see Figure 53, Figure 54)	ADD=2A	I _{IO} =TBD			TBD]
R _{ON}	Weak pull-up equivalent resistor 5)	V _{IN} =V _{SS}	V _{DD} =5V	TBD	40	TBD	kΩ
t(DCTL\out	Generated reset pulse duration	External pin or internal reset sources			6		1/f _{SFOSC}
t _{w(RSTL)out}	Contrated recet pales daration				30		μs
t _{h(RSTL)in}	External reset pulse hold time 6)			5			μs


Notes

- 1. Unless otherwise specified, typical data are based on T_A =25°C and V_{DD} =5V, not tested in production.
- 2. Data based on characterization results, not tested in production.
- 3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.
- 4. The I_{IO} current sunk must always respect the absolute maximum rating specified in Section 10.2 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS} .
- 5. The R_{ON} pull-up equivalent resistor is based on a resistive transistor (corresponding I_{ON} current characteristics described in Figure 52). This data is based on characterization results, not tested in production.

lio[mA]

CONTROL PIN CHARACTERISTICS (Cont'd)

Figure 52. Typical I_{ON} vs. V_{DD} with V_{IN} = V_{SS}

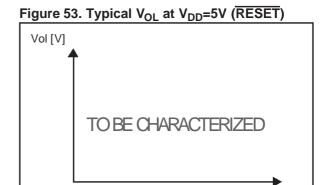
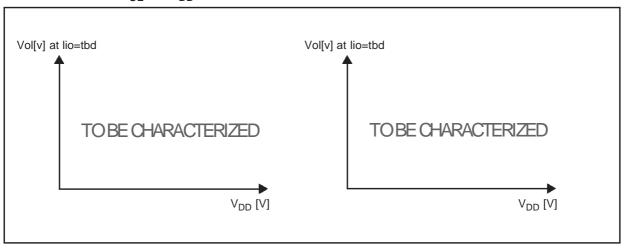



Figure 54. Typical V_{OL} vs. V_{DD} (RESET)

10.10 COMMUNICATION INTERFACE CHARACTERISTICS

10.10.1 USB - Universal Bus Interface

(Operating conditions $T_A = 0$ to +70°C, $V_{DD} = 4.0$ to 5.25V unless otherwise specified)

USB DC Electrical Characteristics									
Parameter	Symbol	Conditions	Min.	Max.	Unit				
Differential Input Sensitivity	VDI	I(D+, D-)	0.2		V				
Differential Common Mode Range	VCM	Includes VDI range	0.8	2.5	V				
Single Ended Receiver Threshold	VSE		0.8	2.0	V				
Static Output Low	VOL	RL of 1.5K ohms to 3.6v		0.3	V				
Static Output High	VOH	RL of 15K ohms to V _{SS}	2.8	3.6	V				
USBVCC: voltage level	USBV	V _{DD} =5v	3.00	3.60	V				

Note 1: RL is the load connected on the USB drivers.

Note 2: All the voltages are measured from the local ground potential.

Figure 55. USB: Data Signal Rise and Fall Time

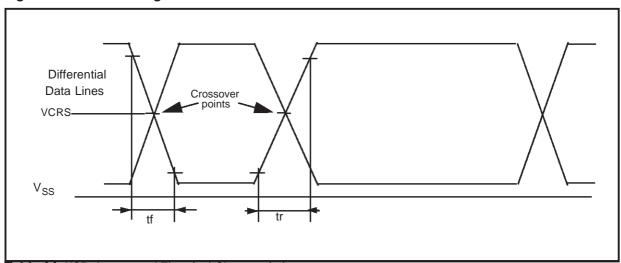


Table 14. USB: Low-speed Electrical Characteristics

Parameter Symbo		Conditions	Min	Max	Unit
Driver characteristics:					
Rise time	tr	Note 1,CL=50 pF	75		ns
Rise time	u	Note 1, CL=600 pF		300	ns
Fall Time	tf	Note 1, CL=50 pF	75		ns
rall fille	u	Note 1, CL=600 pF		300	ns
Rise/ Fall Time matching	trfm	tr/tf	80	120	%
Output signal Crossover Voltage	VCRS		1.3	2.0	V

Note 1: Measured from 10% to 90% of the data signal. For more detailed informations, please refer to Chapter 7 (Electrical) of the USB specification (version 1.1).

11 PACKAGE MECHANICAL DATA

Figure 56. 20-Pin Plastic Small Outline Package, 300-mil Width

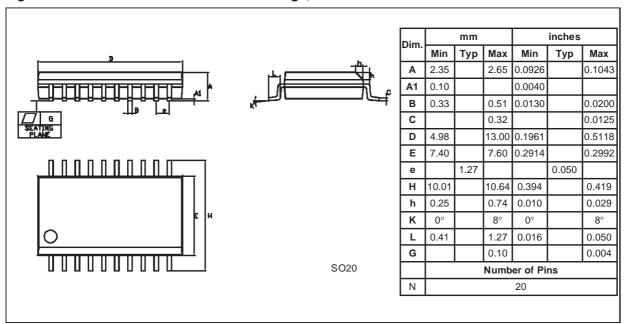
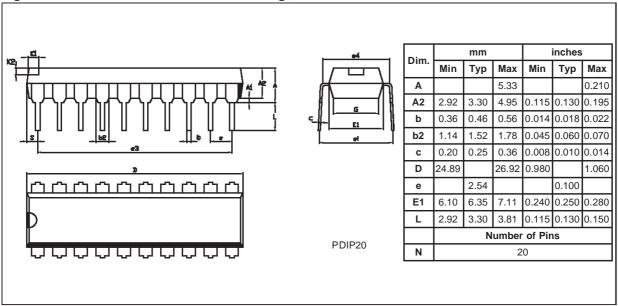



Figure 57. 20-Pin Plastic Dual In-Line Package, 300-mil Width

12 DEVICE CONFIGURATION AND ORDERING INFORMATION

Each device is available for production in user programmable versions (FLASH) as well as in factory coded versions (FASTROM).

FLASH devices are shipped to customers with a default content (FFh), while FASTROM factory coded parts contain the code supplied by the customer. This implies that FLASH devices have to be configured by the customer using the Option Byte while the ROM devices are factory-configured.

12.0.1 Option Byte

The Option Byte allows the hardware configuration of the microcontroller to be selected.

The Option Byte has no address in the memory map and can be accessed only in programming mode using a standard ST7 programming tool. The default contents of the FLASH is fixed to FFh. This means that all the options have "1" as their default value.

In FASTROM devices, the Option Byte is fixed in hardware by the FASTROM code.

OPTION BYTE

7							0
1	1	WDG SW	1	LVD	-	OSC 12/6	FMP_ R

Bit 7:6 = Reserved.

Bit 5 = **WDGSW** *Hardware or software watchdog* This option bit selects the watchdog type.

0: Hardware enabled

1: Software enabled

Bit 4= Reserved.

Bit 3 = **LVD** *Low Voltage Detector selection* This option bit selects the LVD.

0: LVD enabled

1: LVD disabled

Bit 2= Reserved.

Bit 1 = **OSC12/6** Oscillator selection

This option bit selects the clock divider used to drive the USB interface at 6MHz.

0: 6 MHz oscillator (no divider for USB)

1: 12 Mhz oscillator (2 divider for USB)

Bit 0 = **FMP_R** Read out protection

This option bit allows the protection of the software contents against piracy (program or data). When the protection is activated, read/write access is prevented by hardware. If the protection is deactivated, the memory is erased first.

0: Read-out protection enabled

1: Read-out protection disabled

12.1 DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE

Customer code is made up of the FASTROM contents and the list of the selected options (if any). The FASTROM contents are to be sent on diskette, or by electronic means, with the hexadecimal file in .S19 format generated by the development tool. All unused bytes must be set to FFh.

The selected options are communicated to STMicroelectronics using the correctly completed OP-TION LIST appended.

The STMicroelectronics Sales Organization will be pleased to provide detailed information on contractual points.

Figure 58. FLASH User Programmable Device Types

```
TEMP.

DEVICE PACKAGE RANGE

1= standard 0 to +70 °C

B= Plastic DIP
M= Plastic SOIC

ST72F611F1
```

Figure 59. FASTROM Factory-Programmed Device Types

```
TEMP.

| DEVICE | PACKAGE | RANGE |

| 1 = standard 0 to +70 °C

| B = Plastic DIP |
| M = Plastic SOIC

| ST72P611F1
```

Figure 60. ROM Factory-Programmed Device Types

```
TEMP.

1= standard 0 to +70 °C

B= Plastic DIP

M= Plastic SOIC

ST72611F1
```

	STMicroelectronics	OPTION LIST	
	ST7261 MICROCONT	ROLLER FAMILY	
Address:			
Contact:			
*The ROM code name is a ROM code must be sent i STMicroelectronics refere	n .S19 formatHex exte		ssed.
Device:	[] ST72611F1 (ROM) []ST72P61	1F1 (FASTROM)
Package:	[] DIP20 [] SO20	[] Standard (tube)	[] Tape & Reel
Watchdog:	[] Software activation		
Low Voltage Detector:	[] Disabled [] Enabled		
Oscillator Selection:	[] 6 MHz. [] 12 MHz.		
Readout protection:	[] Enabled [] Disabled		
Special Marking: Authorized characters are Maximum character coun	_	[]Yes " nd spaces only.	"
Signature			
Date			

68/71

12.2 ST7 APPLICATION NOTES

IDENTIFICATION DESCRIPTION							
IDENTIFICATION							
PROGRAMMING A							
AN985	EXECUTING CODE IN ST7 RAM						
AN986	USING THE ST7 INDIRECT ADDRESSING MODE						
AN987	ST7 IN-CIRCUIT PROGRAMMING						
AN988	STARTING WITH ST7 ASSEMBLY TOOL CHAIN						
AN989	STARTING WITH ST7 HIWARE C						
AN1039	ST7 MATH UTILITY ROUTINES						
AN1064	WRITING OPTIMIZED HIWARE C LANGUAGE FOR ST7						
AN1106	TRANSLATING ASSEMBLY CODE FROM HC05 TO ST7						
EXAMPLE DRIVER							
AN969	ST7 SCI COMMUNICATION BETWEEN THE ST7 AND A PC						
AN970	ST7 SPI COMMUNICATION BETWEEN THE ST7 AND E PROM						
AN971	ST7 I C COMMUNICATION BETWEEN THE ST7 AND E PROM						
AN972	ST7 SOFTWARE SPI MASTER COMMUNICATION						
AN973	SCI_SOFTWARE COMMUNICATION WITH A PC USING ST72251 16-BIT_TIMER						
AN974	REAL TIME CLOCK WITH THE ST7 TIMER OUTPUT COMPARE						
AN976	DRIVING A BUZZER USING THE ST7 PWM FUNCTION						
AN979	DRIVING AN ANALOG KEYBOARD WITH THE ST7 ADC						
AN980	ST7 KEYPAD DECODING TECHNIQUES, IMPLEMENTING WAKE-UP ON KEYSTROKE						
AN1017	USING THE ST7 USB MICROCONTROLLER						
AN1041	USING ST7 PWM SIGNAL TO GENERATE ANALOG OUTPUT (SINUSOID)						
AN1042	ST7 ROUTINE FOR I C SLAVE MODE MANAGEMENT						
AN1044	MULTIPLE INTERRUPT SOURCES MANAGEMENT FOR ST7 MCUS						
AN1045	ST7 SOFTWARE IMPLEMENTATION OF I C BUS MASTER						
AN1046	ST7 UART EMULATION SOFTWARE						
AN1047	MANAGING RECEPTION ERRORS WITH THE ST7 SCI PERIPHERAL						
AN1048	ST7 SOFTWARE LCD DRIVER						
AN1078	ST7 TIMER PWM DUTY CYCLE SWITCH FOR TRUE 0% or 100% DUTY CYCLE						
AN1082	DESCRIPTION OF THE ST72141 MOTOR CONTROL						
AN1083	ST72141 BLDC MOTOR CONTROL SOFTWARE AND FLOWCHART EXAMPLE						
AN1129	PWM MANAGEMENT FOR BLDC MOTOR DRIVES USING THE ST72141						
AN1130	BRUSHLESS DC MOTOR DRIVE WITH ST72141						
AN1148	USING THE ST7263 FOR DESIGNING A USB MOUSE						
AN1149	HANDLING SUSPEND MODE ON A USB MOUSE						
AN1180	USING THE ST7263 KIT TO IMPLEMENT A USB GAME PAD						
AN1182	USING THE ST7 USB LOW-SPEED FIRMWARE						
PRODUCT OPTIMIZ							
AN982	USING CERAMIC RESONATORS WITH THE ST7						
AN1014	HOW TO MINIMIZE THE ST7 POWER CONSUMPTION						
AN1070	ST7 CHECKSUM SELFCHECKING CAPABILITY						
AN1179	PROGRAMMING ST7 FLASH MICROCONTROLLERS IN REMOTE ISP						
PRODUCT EVALUA							
AN910	ST7 AND ST9 PERFORMANCE BENCHMARKING						
AN990	ST7 BENEFITS VERSUS INDUSTRY STANDARD						
AN1086	ST7 / ST10U435 CAN-do SOLUTIONS FOR CAR MULTIPLEXING						
AN1150	BENCHMARK ST72 VS PC16						
AN1151	PERFORMANCE COMPARISON BETWEEN ST72254 & PC16F8						

12.3 TO GET MORE INFORMATION

To get the latest information on this product please use the ST web server: http://mcu.st.com/

13 SUMMARY OF CHANGES

Description of the changes between the current release of the specification and the previous one.

Revision	Main changes	Date
	RAM size changed from 384 to 256 bytes.	
1.0	Updated Memory map in Figure 5 with 256 RAM size.	March 01
	ICCDATA moved from PB4 to PB6 in Table 1, "Device Pin Description," on page 8.	

Notes:

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

©2001 STMicroelectronics - All Rights Reserved.

Purchase of f^2C Components by STMicroelectronics conveys a license under the Philips I^2C Patent. Rights to use these components in an I^2C system is granted provided that the system conforms to the I^2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

