# APPROVAL SHEET WW25M\_J ±5%, ±1% Metal low ohm current sensing chip resistors Size 2512 (6432) 1W Automotive AEC Q200 Compliant Anti-Sulfuration ASTM B-809 105'C 1000hrs \*Contents in this sheet are subject to change without prior notice. #### **FEATURE** - 1. Metal low ohm and stable TCR performance - 2. Automotive grade AEC Q-200 compliant - 3. 100% CCD inspection - 4. RoHS exemption free and Halogen free products - 5. ASTM B-809 105'C 1000hrs compliant #### **APPLICATION** - Power supply - PDA - Digital meter - Computer - Automotives - Battery charger - DC-DC power converter #### **DESCRIPTION** The resistors are constructed in a high grade low resistive metal body. The resistive layer is covered with a protective coat and printed a resistance marking code over it. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is Tin (lead-free) soder alloy. Fig 1. Construction of Chip-R # **QUICK REFERENCE DATA** | Item | General Specification | | | | |--------------------------------------------|----------------------------------|--|--|--| | Series No. | WW25M | | | | | Size code | 2512 ( 6432 ) | | | | | Resistance Tolerance | ±5%, ±1% | | | | | Resistance Range | 5, 10, 12, 15, 20, 25, 50, 100mΩ | | | | | TCR (ppm/°C) | | | | | | 5 ~ 100mΩ | ≤ ±70 ppm/°C | | | | | Max. dissipation at T <sub>amb</sub> =70°C | 1 W | | | | | Operation temperature | - 55 ~ +155'C | | | | # **MECHANICAL DATA** | Symbol | Dimensions (mm) | | | | |--------|-----------------|--|--|--| | L | 6.20±0.20 | | | | | W | 3.20±0.20 | | | | | Т | 0.60±0.20 | | | | | Tt | 0.80±0.20 | | | | | Tb | 0.80±0.20 | | | | #### **MARKING** Each resistor is marked with a four-digit code on the protection coat to define resistance value. Example: $R025 = 0.025\Omega$ , $R050 = 0.05\Omega$ #### **FUNCTIONAL DESCRIPTION** ## **Derating curve** The power that the resistor can dissipate depends on the operating temperature; see Fig.2 Fig.2 Maximum dissipation in percentage of rated power As a function of the ambient temperature #### **MOUNTING** Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems. Chip placement can be on ceramic substrates and printed-circuit boards (PCBs). Electrical connection to the circuit is by individual soldering condition. The end terminations guarantee a reliable contact. #### **SOLDERING CONDITION** The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs). Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3. Fig 3. Infrared soldering profile for Chip Resistors WW25M #### **CATALOGUE NUMBERS** The resistors have a catalogue number starting with | WW25 | М | R025 | J | Т | L | J | |-------------|--------------|----------------------|-----------|----------------|----------------------------|----------------------| | Size code | Type code | Resistance code | Tolerance | Packaging code | Termination | Special code | | WW25 : 2512 | M : 1W | $0.025\Omega$ = R025 | J : ±5% | T:7" reeled in | code | J = Automotive grade | | | Sensing type | | F:±1% | tape | L = Sn base<br>(lead free) | AEC Q-200 compliant | | | | | | | , | ASTM B-809 compliant | Reeled tape packaging : 12mm width plastic emboss taping 4,000pcs per reel. # TEST AND REQUIREMENTS ( AEC Q-200 ) | TEST | PROCEDURE / TEST METHOD | REQUIREMENT | | |--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--| | 1231 | PROCEDURE / TEST METHOD | Resistor | | | JISC5201-1: 1998 Clause 4.8 | - DC resistance values measurement<br>- Temperature Coefficient of Resistance (T.C.R)<br>Natural resistance change per change in degree centigrade.<br>$R_2 - R_1$ | Within the specified tolerance Refer to<br>"QUICK REFERENCE DATA" | | | | $\frac{R_2-R_1}{R_1(t_2-t_1)}\!\!\times\!\!10^6 \; \text{(ppm/°C)} t_1:20\text{°C}+5\text{°C}-1\text{°C}$ $\text{R}_1: \text{Resistance at reference temperature}$ $\text{R}_2: \text{Resistance at test temperature}$ | | | | Resistance to soldering | Un-mounted chips completely immersed for 10±1second in a | | | | heat (R.S.H) | SAC solder bath at 270°C ±5°C | no visible damage | | | MIL-STD-202<br>method 210 | | | | | Solderability J-STD-002 | a) Bake the sample for 155°C dwell time 4hrs/ solder dipping 235°C/ 5sec. b) Steam the sample dwell time 8 hour/ solder dipping 215°C/ 5sec. c) Steam the sample dwell time 8 hour/ solder dipping 260°C/ 7sec. | 95% coverage min., good tinning and no visible damage | | | Temperature cycling JESD22 Method JA-104 | 1000 cycles, -55°C ~ +125°C, dwell time 30min maximum. | $\Delta$ R/R max. $\pm$ (0.5%+1m $\Omega$ )<br>No visible damage | | | Moisture Resistance MIL-STD-202 method 106 | 65±2°C, 80~100% RH, 10 cycles, 24 hours/ cycle | $\Delta$ R/R max. ±(0.5%+0.5mΩ)<br>No visible damage | | | Bias Humidity MIL-STD-202 method 103 | 1000+48/-0 hours; 85°C, 85% RH, 10% of operation power | $\Delta$ R/R max. $\pm$ (1%+0.5m $\Omega$ )<br>No visible damage | | | Operational Life MIL-STD-202 method 108 | 1000+48/-0 hours; 35% of operation power, 125±2°C | $\Delta$ R/R max. $\pm$ (1%+0.5m $\Omega$ )<br>No visible damage | | | High Temperature Exposure MIL-STD-202 Method 108 | 1000+48/-0 hours; without load in a temperature chamber controlled 125±3°C | $\Delta$ R/R max. $\pm$ (1%+0.5m $\Omega$ ) No visible damage | | | Board Flex | Resistors mounted on a 90mm glass epoxy resin | $\Delta$ R/R max. $\pm$ (0.5%+0.5m $\Omega$ ) | | | AEC-Q200-005 | PCB(FR4),bending once 2mm for 60sec. | No visible damage | | | Terminal strength AEC-Q200-006 | Pressurizing force: 1.8Kg, Test time: 60±1sec. | No remarkable damage or removal of the terminations | | | Thermal shock MIL-STD-202 method 107 | Test -55 to 155℃/ dwell time 15min/ Max transfer time 20sec 300cycles | $\Delta$ R/R max. $\pm$ (0.5%+0.5m $\Omega$ )<br>No visible damage | | | ESD<br><b>AEC-Q200-002</b> | Test contact 8KV (air). | $\Delta$ R/R max. $\pm$ (1%+0.5m $\Omega$ )<br>No visible damage | | | | <u></u> | <b>,</b> | | |------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--| | Mechanical Shock MIL-STD-202 | Test ½ Sine Pulse, Peak value: 100g, normal duration: 6ms, Velocity change:12.3ft/sec. Three shocks in each direction, total 18 shocks. | Within product specification tolerance and no visible damage. | | | method 213 | | | | | Vibration | Test 5g's for 20 min., 12 cycles each of 3 orientations. | $\triangle$ R/R max. $\pm$ (0.5%+0.5m $\Omega$ ) | | | MIL-STD-202 | | no visible damage. | | | method 204 | | | | | Resistance to Solvents : | Solvent is Isopropyl alcohol, immersion 3mins at 25°C and brush 10 strokes with a toothbrush with a handle made of a | No superficial defect on marking, encapsulation, coating, appearance. | | | MIL-STD-202 | non-reactive material (wet bristle), immersion and brush 3 | Electrical characteristics within products | | | Method 215 | times and then air blow dry. | specification and tolerance. Inspect at 3X max. for marking, inspect at 10X for part damage. | | | External Visual | | No visual damage and refer WTC marking | | | MIL-STD-883 | marking and workmanship | code. | | | method 2009 | | | | | Physical Dimension | Verify physical dimensions(L, W, T, Tb, Tt) | Within the specified tolerance for WTC. | | | JESD22 | | | | | method JB-100 | | | | | Sulfuration test | ASTM B-809-95 105'C 1000hrs | $\triangle$ R/R max. $\pm$ (2%+0.5m $\Omega$ ) | | | ASTM B-809-95 | | no visible damage. | | ### **PACKAGING** # Plastic Tape specifications (unit :mm) | Symbol | Α | В | W | F | E | |------------|-----------|-----------|------------|----------|-----------| | Dimensions | 6.75±0.20 | 3.50±0.20 | 12.00±0.30 | 5.50±0.1 | 1.75±0.10 | | Symbol | P1 | P0 | ΦD | Т | |------------|-----------|-----------|---------------------------------------|----------| | Dimensions | 4.00±0.10 | 4.00±0.10 | Ф1.50 <sup>+0.1</sup> <sub>-0.0</sub> | Max. 1.2 | #### **Reel dimensions** | Symbol | Α | В | С | D | |-------------|------------|-----------|----------|----------| | (unit : mm) | Φ178.0±2.0 | Φ60.0±1.0 | 13.0±0.2 | 14.0±0.2 | # **Taping quantity** - Chip resistors 4,000 pcs per reel.