DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

AD7896JR Ver la hoja de datos (PDF) - Analog Devices

Número de pieza
componentes Descripción
Fabricante
AD7896JR Datasheet PDF : 16 Pages
First Prev 11 12 13 14 15 16
AD7896
To chip select the AD7896 in systems where more than one
device is connected to the 8X51/L51 serial port, a port bit,
configured as an output, from one of the 8X51/L51 parallel
ports can be used to gate on or off the serial clock to the AD7896.
A simple AND function on this port bit and the serial clock from
the 8X51/L51 will provide this function. The port bit should be
high to select the AD7896 and low when it is not selected.
The end of conversion is monitored by using the BUSY signal,
which is shown in the interface diagram of Figure 5, with the
BUSY line from the AD7896 connected to the Port P1.2 of the
8X51/L51 so the BUSY line can be polled by the 8X51/L51.
The BUSY line can be connected to the INT1 line of the
8X51/L51 if an interrupt driven system is preferred. These two
options are shown on the diagram.
Note also that the AD7896 outputs the MSB first during a read
operation while the 8X51/L51 expects the LSB first. Therefore,
the data that is read into the serial buffer needs to be rearranged
before the correct data format from the AD7896 appears in the
accumulator.
The serial clock rate from the 8X51/L51 is limited to signifi-
cantly less than the allowable input serial clock frequency with
which the AD7896 can operate. As a result, the time to read
data from the part will actually be longer than the conversion
time of the part. This means that the AD7896 cannot run at its
maximum throughput rate when used with the 8X51/L51.
The BUSY line can be connected to the IRQ line of the
68HC11/L11 if an interrupt driven system is preferred. These
two options are shown in the diagram.
The serial clock rate from the 68HC11/L11 is limited to signifi-
cantly less than the allowable input serial clock frequency with
which the AD7896 can operate. As a result, the time to read
data from the part will actually be longer than the conversion
time of the part. This means that the AD7896 cannot run at its
maximum throughput rate when used with the 68HC11/L11.
PC2 OR
IRQ
68HC11/L11
SCK
BUSY
AD7896
SCLK
MISO
SDATA
Figure 6. AD7896 to 68HC11/L11 Interface
AD7896–ADSP-2105 Interface
P1.2
OR
INT1
8X51/L51
P3.0
BUSY
AD7896
SDATA
P3.1
SCLK
Figure 5. AD7896 to 8X51/L51 Interface
AD7896–68HC11/L11 Interface
An interface circuit between the AD7896 and the 68HC11/L11
microcontroller is shown in Figure 6. For the interface shown,
the 68HC11/L11 SPI port is used and the 68HC11/L11 is con-
figured in its single-chip mode. The 68HC11/L11 is configured
in the master mode with its CPOL bit set to a Logic 0 and its
CPHA bit set to a Logic 1. As with the previous interface, the
diagram shows the simplest form of the interface, where the
AD7896 is the only part connected to the serial port of the
68HC11/L11 and, therefore, no decoding of the serial read
operations is required.
Once again, to chip select the AD7896 in systems where more
than one device is connected to the 68HC11/L11 serial port, a
port bit, configured as an output, from one of the 68HC11/L11
parallel ports can be used to gate on or off the serial clock to the
AD7896. A simple AND function on this port bit and the serial
clock from the 68HC11/L11 will provide this function. The port
bit should be high to select the AD7896 and low when it is
not selected.
The end of conversion is monitored by using the BUSY signal
which is shown in the interface diagram of Figure 6. With the
BUSY line from the AD7896 connected to the Port PC2 of the
68HC11/L11, the BUSY line can be polled by the 68HC11/L11.
–10–
Rev. D

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]