DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

H5PS1G63EFR-S6J Ver la hoja de datos (PDF) - Hynix Semiconductor

Número de pieza
componentes Descripción
Fabricante
H5PS1G63EFR-S6J
Hynix
Hynix Semiconductor 
H5PS1G63EFR-S6J Datasheet PDF : 63 Pages
First Prev 51 52 53 54 55 56 57 58 59 60 Next Last
Release
H5PS1G63EFR Series
Specific Notes for dedicated AC parameters
1. User can choose which active power down exit timing to use via MRS(bit 12). tXARD is expected to be used for fast
active power down exit timing. tXARDS is expected to be used for slow active power down exit timing where a lower
power value is defined by each vendor data sheet.
2. AL = Additive Latency
3. This is a minimum requirement. Minimum read to precharge timing is AL + BL/2 providing the tRTP and tRAS(min)
have been satisfied.
4. A minimum of two clocks (2 * tCK) is required irrespective of operating frequency
5. Timings are guaranteed with command/address input slew rate of 1.0 V/ns. See System Derating for other slew rate
values.
6. Timings are guaranteed with data, mask, and (DQS/RDQS in singled ended mode) input slew rate of 1.0 V/ns.
See System Derating for other slew rate values.
7. Timings are guaranteed with CK/CK differential slew rate of 2.0 V/ns. Timings are guaranteed for DQS signals with a
differen tial slew rate of 2.0 V/ns in differential strobe mode and a slew rate of 1V/ns in single ended mode. See System
Derating for other slew rate values.
DQ
Slew
rate
V/ns
tDS, tDH Derating Values for DDR2-1066(ALL units in 'ps', Note 1 applies to entire Table)
DQS, DQS Differential Slew Rate
4.0 V/ns 3.0 V/ns 2.0 V/ns 1.8 V/ns 1.6 V/ns 1.4 V/ns 1.2 V/ns 1.0 V/ns 0.8 V/ns
△△△△△△△△△△△△△△△△△△
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH
2.0 100 45 100 45 100 45 - - - - - - - - - - - -
1.5 67 21 67 21 67 21 79 33 - - - - - - - - - -
1.0 0 0 0 0 0 0 12 12 24 24 - - - - - - - -
0.9 - - -5 -14 -5 -14 7 -2 19 10 31 22 - - - - - -
0.8 - - - - -13 -31 -1 -19 11 -7 23 5 35 17 - - - -
0.7 - - - - - - -10 -42 2 -30 14 -18 26 -6 38 6 - -
0.6 - - - - - - - - -10 -59 2 -47 14 -35 26 -23 38 -11
0.5 - - - - - - - - - - -24 -89 -12 -77 0 -65 12 -53
0.4 - - - - - - - - - - - - -52 -140 -40 -128 -28 -116
1) For all input signals the total tIS(setup time) and tIH(hold) time) required is calculated by adding the
datasheet value to the derating value listed in above Table.
Setup(tIS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of
VREF(dc) and the first crossing of VIH(ac)min. Setup(tIS) nominal slew rate for a falling signal is defined as the
slew rate between the last crossing of VREF(dc) and the first crossing of VIL(ac)max. If the actual signal is
always earlier than the nominal slew rate for line between shaded ‘VREF(dc) to ac region’, use nominal slew
rate for derating value(see fig a.) If the actual signal is later than the nominal slew rate line anywhere
between shaded ‘VREF(dc) to ac region’, the slew rate of a tangent line to the actual signal from the ac level to
dc level is used for derating value(see Fig b.)
Hold(tIH) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of
VslIeLw(drca)tme abxetawnedetnhethfeirslatsctrocrsossinsgingofoVfRVERFE(dF(cd)c. )H. oIfldt(hteIHa)cntuoaml isniaglnsalel wis
rate for a falling signal is defined as the
always later than the nominal slew rate
line between shaded ‘dc to VREF(dc) region’, use nominal slew rate for derating value(see Fig.c)
Rev. 1.1 / July 2009
51

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]