DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

MCP16323T-330E Ver la hoja de datos (PDF) - Microchip Technology

Número de pieza
componentes Descripción
Fabricante
MCP16323T-330E Datasheet PDF : 32 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
MCP16323
4.2.2 PEAK CURRENT MODE CONTROL
The MCP16323 integrates a Peak Current Mode
Control architecture, resulting in superior AC regulation
while minimizing the number of voltage loop
compensation components, and their size, for
integration. Peak Current Mode Control takes a small
portion of the inductor current, replicates it and
compares this replicated current sense signal with the
output of the integrated error voltage. In practice, the
inductor current and the internal switch current are
equal during the switch-on time. By adding this peak
current sense to the system control, the step-down
power train system can be approximated by a 1st order
system rather than a 2nd order system. This reduces
the system complexity and increases its dynamic
performance.
For Pulse-Width Modulation (PWM) duty cycles that
exceed 50%, the control system can become bimodal,
where a wide pulse followed by a short pulse repeats
instead of the desired fixed pulse width. To prevent this
mode of operation, an internal compensating ramp is
summed into the current sense signal.
4.2.3
PULSE WIDTH MODULATION
(PWM)
The internal oscillator periodically starts the switching
period, which in the MCP16323’s case occurs every
1 µs or 1 MHz. With the high-side integrated
N-Channel MOSFET turned on, the inductor current
ramps up until the sum of the current sense and slope
compensation ramp exceeds the integrated error
amplifier output. Once this occurs, the high-side switch
turns off and the low-side switch turns on. The error
amplifier output slews up or down to increase or
decrease the inductor peak current feeding into the
output LC filter. If the regulated output voltage is lower
than its target, the inverting error amplifier output rises.
This results in an increase in the inductor current to
correct for errors in the output voltage. The fixed
frequency duty cycle is terminated when the sensed
inductor peak current, summed with the internal slope
compensation, exceeds the output voltage of the error
amplifier. The PWM latch is set by turning off the high-
side internal switch and preventing it from turning on
until the beginning of the next cycle.
4.2.4 HIGH-SIDE DRIVE
The MCP16323 features an integrated high-side
N-Channel MOSFET for high efficiency step-down
power conversion. An N-Channel MOSFET is used for
its low resistance and size (instead of a P-Channel
MOSFET). The N-Channel MOSFET gate must be
driven above its source to fully turn on the device,
resulting in a gate-drive voltage above the input to turn
on the high-side N-Channel. The high-side N-Channel
source is connected to the inductor and boost cap or
switch node. When the high-side switch is off and the
low-side is on, the inductor current flows through the
low-side switch, providing a path to recharge the boost
cap from the boost voltage source. An internal boost-
blocking diode is used to prevent current flow from the
boost cap back into the output during the internal
switch-on time. Prior to start-up, the boost cap has no
stored charge to drive the switch. An internal regulator
is used to “pre-charge” the boost cap. Once pre-
charged, the switch is turned on and the inductor
current flows. When the high-side switch turns off and
the low-side turns on, current freewheels through the
inductor and low-side switch, providing a path to
recharge the boost cap. When the duty cycle
approaches its maximum value, there is very little time
for the boost cap to be recharged due to the short
amount time that the low-side switch is on. Therefore,
when the maximum duty cycle approaches, the switch
node is forced off for 240 ns every eight cycles to
ensure that the boost cap gets replenished.
DS20002284B-page 18
2011-2016 Microchip Technology Inc.

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]