DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

LT3758EDD データシートの表示(PDF) - Linear Technology

部品番号
コンポーネント説明
メーカー
LT3758EDD Datasheet PDF : 36 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
LT3758/LT3758A
Applications Information
The constant c in the preceding equation represents the
percentage peak-to-peak ripple current in the inductor,
relative to IL(MAX).
The inductor ripple current has a direct effect on the choice
of the inductor value. Choosing smaller values of ∆IL
requires large inductances and reduces the current loop
gain (the converter will approach voltage mode). Accepting
larger values of ∆IL provides fast transient response and
allows the use of low inductances, but results in higher input
current ripple and greater core losses. It is recommended
that c fall within the range of 0.2 to 0.6.
Given an operating input voltage range, and having chosen
the operating frequency and ripple current in the inductor,
the inductor value of the boost converter can be determined
using the following equation:
L
=
VIN(MIN)
IL f
DMAX
The peak and RMS inductor current are:
IL(PEAK )
=
IL(MAX )

1+
c
2

IL(RMS) = IL(MAX)
1+ c2
12
Based on these equations, the user should choose the
inductors having sufficient saturation and RMS current
ratings.
Set the sense voltage at IL(PEAK) to be the minimum of the
SENSE current limit threshold with a 20% margin. The
sense resistor value can then be calculated to be:
RSENSE
=
80mV
IL(PEAK )
Boost Converter: Power MOSFET Selection
Important parameters for the power MOSFET include the
drain-source voltage rating (VDS), the threshold voltage
(VGS(TH)), the on-resistance (RDS(ON)), the gate to source
and gate to drain charges (QGS and QGD), the maximum
drain current (ID(MAX)) and the MOSFET’s thermal
resistances (RθJC and RθJA).
16
The power MOSFET will see full output voltage, plus a
diode forward voltage, and any additional ringing across
its drain-to-source during its off-time. It is recommended
to choose a MOSFET whose BVDSS is higher than VOUT by
a safety margin (a 10V safety margin is usually sufficient).
The power dissipated by the MOSFET in a boost converter is:
PFET = I2L(MAX) RDS(ON) DMAX + 2 • V2OUT IL(MAX)
CRSS f/1A
The first term in the preceding equation represents the
conduction losses in the device, and the second term, the
switching loss. CRSS is the reverse transfer capacitance,
which is usually specified in the MOSFET characteristics.
For maximum efficiency, RDS(ON) and CRSS should be
minimized. From a known power dissipated in the power
MOSFET, its junction temperature can be obtained using
the following equation:
TJ = TA + PFET θJA = TA + PFET • (θJC + θCA)
TJ must not exceed the MOSFET maximum junction
temperature rating. It is recommended to measure the
MOSFET temperature in steady state to ensure that absolute
maximum ratings are not exceeded.
Boost Converter: Output Diode Selection
To maximize efficiency, a fast switching diode with low
forward drop and low reverse leakage is desirable. The
peak reverse voltage that the diode must withstand is
equal to the regulator output voltage plus any additional
ringing across its anode-to-cathode during the on-time.
The average forward current in normal operation is equal
to the output current, and the peak current is equal to:
ID(PEAK )
= IL(PEAK)
=

1+
c
2 
IL(MAX)
It is recommended that the peak repetitive reverse voltage
rating VRRM is higher than VOUT by a safety margin (a 10V
safety margin is usually sufficient).
The power dissipated by the diode is:
PD = IO(MAX) VD
and the diode junction temperature is:
TJ = TA + PD RθJA
3758afd

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]