DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

DSP56001 View Datasheet(PDF) - Motorola => Freescale

Part Name
Description
Manufacturer
DSP56001 Datasheet PDF : 64 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
External Clock/Crystal Input (EXTAL)
EXTAL may be used to interface the crystal oscillator input to an exter-
nal crystal or an external clock.
Crystal Output (XTAL)
This output connects the internal crystal oscillator output to an external
crystal. If an external clock is used, XTAL should not be connected.
HOST INTERFACE
Host Data Bus (H0-H7)
This bidirectional data bus is used to transfer data between the host
processor and the DSP56001. This bus is an input unless enabled by
a host processor read. H0-H7 may be programmed as general pur-
pose parallel I/O pins called PB0-PB7 when the Host Interface is not
being used. These pins are configured as a GPIO input pins during
hardware reset.
Host Address (HA0-HA2)
These inputs provide the address selection for each Host Interface
register. HA0-HA2 may be programmed as general purpose parallel
I/O pins called PB8-PB10 when the Host Interface is not being used.
These pins are configured as a GPIO input pins during hardware reset.
Host Read/Write (HR/W)
This input selects the direction of data transfer for each host processor
access. HR/W may be programmed as a general purpose I/O pin
called PB11 when the Host Interface is not being used. This pin is con-
figured as a GPIO input pins during hardware reset.
Host Enable (HEN)
This input enables a data transfer on the host data bus. When HEN is
asserted and HR/W is high, H0-H7 become outputs, and DSP56001
data may be read by the host processor, When HEN is asserted and
HR/W is low, H0-H7 become inputs and host data is latched inside the
DSP when HEN is deasserted. Normally a chip select signal, derived
from host address decoding and an enable clock, is used to generate
HEN. HEN may be programmed as a general purpose I/O pin called
PB12 when the Host Interface is not being used. This pin is configured
as a GPIO input pins during hardware reset.
Host Request (HREQ)
This open-drain output signal is used by the DSP56001 Host Interface
to request service from the host processor, DMA controller, or simple
external controller. HREQ may be programmed as a general purpose
I/O pin (not open-drain) called PB13 when the Host interface is not be-
ing used. HREQ should be pulled high when not in use. This pin is con-
figured as a GPIO input pins during hardware reset.
Host Acknowledge (HACK)
This input has two functions: 1) to receive a Host Acknowledge hand-
shake signal for DMA transfers and, 2) to receive a Host Interrupt Ac-
knowledge compatible with MC68000 Family processors. HACK may
be programmed as a general purpose I/O pin called PB14 when the
Host Interface is not being used. This pin is configured as a GPIO input
pins during hardware reset. HACK should be pulled high when not
in use.
Transmit Data (TXD)
This output transmits serial data from the SCI Transmit Shift Register.
Data changes on the negative edge of the transmit clock. This output
is stable on the positive edge of the transmit clock. TXD may be pro-
grammed as a general purpose I/O pin called PC1 when the SCI is not
being used. This pin is configured as a GPIO input pins during hard-
ware reset.
SCI Serial Clock (SCLK)
This bidirectional pin provides an input or output clock from which the
transmit and/or receive baud rate is derived in the asynchronous mode
and from which data is transferred in the synchronous mode. SCLK
may be programmed as a general purpose I/O pin called PC2 when
the SCI is not being used. This pin is configured as a GPIO input pins
during hardware reset.
SYNCHRONOUS SERIAL INTERFACE (SSI)
Serial Control Zero (SC0)
This bidirectional pin is used for control by the SSI. SC0 may be pro-
grammed as a general purpose I/O pin called PC3 when the SSI is not
being used. This pin is configured as a GPIO input pins during hard-
ware reset.
Serial Control One (SC1)
This bidirectional pin is used for control by the SSI. SC1 may be pro-
grammed as a general purpose I/O pin called PC4 when the SSI is not
being used. This pin is configured as a GPIO input pins during hard-
ware reset.
Serial Control Two (SC2)
This bidirectional pin is used for control by the SSI. SC2 may be pro-
grammed as a general purpose I/O pin called PC5 when the SSI is not
being used. This pin is configured as a GPIO input pins during hard-
ware reset.
SSI Serial Clock (SCK)
This bidirectional pin provides the serial bit rate clock for the SSI when
only one clock is used. SCK may be programmed as a general pur-
pose I/O pin called PC6 when the SSI is not being used. This pin is
configured as a GPIO input pins during hardware reset.
SSI Receive Data (SRD)
This input pin receives serial data into the SSI Receive Shift Register.
SRD may be programmed as a general purpose I/O pin called PC7
when the SSI is not being used. This pin is configured as a GPIO input
pins during hardware reset.
SSI Transmit Data (STD)
This output pin transmits serial data from the SSI Transmit Shift Reg-
ister. STD may be programmed as a general purpose I/O pin called
PC8 when the SSI is not being used. This pin is configured as a GPIO
input pins during hardware reset.
SERIAL COMMUNICATIONS INTERFACE (SCI)
Receive Data (RXD)
This input receives byte-oriented data into the SCI Receive Shift Reg-
ister. Input data is sampled on the positive edge of the Receive Clock.
RXD may be programmed as a general purpose I/O pin called PC0
when the SCI is not being used. This pin is configured as a GPIO input
pins during hardware reset.
MOTOROLA
4
DSP56001

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]