DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

ELM401 View Datasheet(PDF) - Elm Electronics

Part Name
Description
Manufacturer
ELM401
ELM
Elm Electronics ELM
ELM401 Datasheet PDF : 8 Pages
1 2 3 4 5 6 7 8
ELM401
Rotary Encoders
A rotary encoder (sometimes referred to as a
quadrature encoder) is a device that produces digital
(on/off) outputs in response to rotary, or circular,
motion. It is often constructed such that it looks very
much like a potentiometer, or audio volume control
(see the picture of a typical device, at the right).
As the encoder shaft is turned, internal contacts
open and close, creating two waveforms that are
ideally separated in phase by 90 degrees (ie ‘in
quadrature’). Actually, you need to provide external
‘pullup’ resistors and a power supply to create these
waveforms, as the contacts themselves can not do
this. An ideal waveform from a rotary encoder would
look like this:
A
B
Figure 1. Quadrature Waveforms
Due to the 90 degree phase difference, when one
waveform changes, the other is always stable. By
noting the direction of the change and the level of the
other input at that time, you can determine the
direction of motion of the shaft.
Rotary encoders are not ideal, however. Due to
their construction, and variations in shaft speed, the
A typical rotary encoder
waveforms are not perfectly square with the 50% duty
cycles shown. Figure 2 shows a captured trace from a
real rotary encoder that is more representative of what
you will typically find. Note that the two ‘scope
channels (1 and 2) represent the encoder outputs A
and B, respectively. The ch 1 (A) waveform leads the
ch 2 (B) waveform, which usually means that the shaft
is turning in a clockwise direction.
The first rising edge of the channel 2 waveform
shows another problem that occurs with moving
mechanical contacts - multiple pulses due to bounce.
When two contacts meet, the moving one will tend to
bounce, like a ball does when it is dropped on the
floor. Each bounce results in an electrical connection
being made, then broken, which will look like multiple
inputs to a fast electronic circuit. Various mechanical
means are used to reduce the amount of bounce, but it
can never really be eliminated. The following section
discusses how the ELM401 uses electronic means to
remove the bounce.
ELM401DSB
Figure 2. Actual Rotary Encoder waveform
Elm Electronics – Circuits for the Hobbyist
www.elmelectronics.com
5 of 8

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]