DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

FM93C86A View Datasheet(PDF) - Fairchild Semiconductor

Part Name
Description
Manufacturer
FM93C86A Datasheet PDF : 12 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
Table 2. Instruction set (8-bit organization)
Instruction
READ
WEN
WRITE
WRALL
WDS
ERASE
ERAL
Start Bit
1
1
1
1
1
1
1
Opcode Field
Address Field
10
A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
00
1 1XXXXXXXXX
01
A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
00
0 1XXXXXXXXX
00
0 0XXXXXXXXX
11
A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
00
1 0XXXXXXXXX
Data Field
D7-D0
D7-D0
Functional Description
A typical Microwire cycle starts by first selecting the device
(bringing the CS signal high). Once the device is selected, a valid
Start bit (1) should be issued to properly recognize the cycle.
Following this, the 2-bit opcode of appropriate instruction should
be issued. After the opcode bits, the 10-bit (or 11-bit) address
information should be issued. For certain instructions, some of the
bits of this field are dont care values (can be 0or 1), but they
should still be issued. Following the address information, depend-
ing on the instruction (WRITE and WRALL), 16-Bit data (or 8-Bit)
is issued. Otherwise, depending on the instruction (READ), the
device starts to drive the output data on the DO line. Other
instructions perform certain control functions and do not deal with
data bits. The Microwire cycle ends when the CS signal is brought
low. However during certain instructions, falling edge of the CS
signal initiates an internal cycle (Programming), and the device
remains busy till the completion of the internal cycle. Each of the
7 instructions is explained in detail in the following sections.
1) Read (READ)
READ instruction allows data to be read from a selected location
in the memory array. Input information (Start bit, Opcode and
Address) for this instruction should be issued as listed under Table
1 or Table 2. Upon receiving a valid input information, decoding of
the opcode and the address is made, followed by data transfer
from the selected memory location into a 16-bit serial-out shift
register. This 16-bit data (or 8-bit data) is then shifted out on the
DO pin. MSB of the data (D15 or D8) is shifted out first and LSB
(DO) is shifted out last. A dummy-bit (logical 0) precedes this data
output string. Output data changes are initiated on the rising edge
of the SK clock. After reading the 16-bit (or 8-bit) data, the CS
signal can be brought low to end the Read cycle. Refer Read cycle
diagram.
2) Write Enable (WEN)
When VCC is applied to the part, it powers upin the Write Disable
(WDS) state. Therefore, all programming operations must be
preceded by a Write Enable (WEN) instruction. Once a Write
Enable instruction is executed, programming remains enabled
until a Write Disable (WDS) instruction is executed or VCC is
completely removed from the part. Input information (Start bit,
Opcode and Address) for this WEN instruction should be issued
as listed under Table 1 or Table 2. The device becomes write-
enabled at the end of this cycle when the CS signal is brought low.
Execution of a READ instruction is independent of WEN instruc-
tion. Refer Write Enable cycle diagram.
3) Write (WRITE)
WRITE instruction allows write operation to a specified location in
the memory with a specified data. This instruction is valid only when
device is write-enabled (Refer WEN instruction).
Input information (Start bit, Opcode, Address and Data) for this
WRITE instruction should be issued as listed under Table 1 or
Table 2. The self-timed programming cycle starts with the clocking
of the last data bit (DO). It takes tWP time (refer appropriate DC and
AC Electrical Characteristics table) for the internal programming
cycle to finish. During this time, the device remains busy and is not
ready for another instruction.
The status of the internal programming cycle can be polled at any
time by bringing the CS signal high again, after tCS interval. When
CS signal is high, the DO pin indicates the READY/BUSY status
of the chip. DO = logical 0 indicates that the programming is still
in progress. DO = logical 1 indicates that the programming is
finished and the device is ready for another instruction. It is not
required to provide the SK clock during this status polling. While
the device is busy, it is recommended that no new instruction be
issued. Refer Write cycle diagram.
It is also recommended to follow this instruction (after the device
becomes READY) with a Write Disable (WDS) instruction to
safeguard data against corruption due to spurious noise, inadvert-
ent writes etc.
4) Write All (WRALL)
Write all (WRALL) instruction is similar to the Write instruction
except that WRALL instruction will simultaneously program all
memory locations with the data pattern specified in the instruction.
This instruction is valid only when device is write-enabled (Refer
WEN instruction).
Input information (Start bit, Opcode, Address and Data) for this
WRALL instruction should be issued as listed under Table 1 or
Table 2. The self-timed programming cycle starts with the clocking
of the last data bit (DO). It takes tWP time (Refer appropriate DC
and AC Electrical Characteristics table) for the internal program-
ming cycle to finish. During this time, the device remains busy and
is not ready for another instruction. Status of the internal program-
ming can be polled as described under WRITE instruction descrip-
tion. While the device is busy, it is recommended that no new
instruction be issued. Refer Write All cycle diagram.
FM93C86A Rev. C.1
www.fairchildsemi.com

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]