DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

ADM7171 View Datasheet(PDF) - Analog Devices

Part Name
Description
Manufacturer
ADM7171 Datasheet PDF : 23 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
Data Sheet
ABSOLUTE MAXIMUM RATINGS
Table 4.
Parameter
VIN to GND
VOUT to GND
EN to GND
SS to GND
SENSE to GND
Storage Temperature Range
Operating Junction Temperature Range
Soldering Conditions
Rating
−0.3 V to +7 V
−0.3 V to VIN
−0.3 V to +7 V
−0.3 V to VIN
−0.3 V to +7 V
−65°C to +150°C
−40°C to +125°C
JEDEC J-STD-020
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
THERMAL DATA
Absolute maximum ratings apply individually only, not in
combination. The ADM7171 can be damaged when the
junction temperature limits are exceeded. Monitoring ambient
temperature does not guarantee that TJ is within the specified
temperature limits. In applications with high power dissipation
and poor thermal resistance, the maximum ambient
temperature may need to be derated.
In applications with moderate power dissipation and low
printed circuit board (PCB) thermal resistance, the maximum
ambient temperature can exceed the maximum limit provided
that the junction temperature is within specification limits. The
junction temperature (TJ) of the device is dependent on the
ambient temperature (TA), the power dissipation of the device
(PD), and the junction-to-ambient thermal resistance of the
package (θJA).
Maximum junction temperature (TJ) is calculated from the
ambient temperature (TA) and power dissipation (PD) using the
formula
TJ = TA + (PD × θJA)
Junction-to-ambient thermal resistance (θJA) of the package is
based on modeling and calculation using a 4-layer board. The
junction-to-ambient thermal resistance is highly dependent on
the application and board layout. In applications where high
maximum power dissipation exists, close attention to thermal
board design is required. The value of θJA may vary, depending on
ADM7171
PCB material, layout, and environmental conditions. The
specified values of θJA are based on a 4-layer, 4 in. × 3 in. circuit
board. See JESD51-7 and JESD51-9 for detailed information on
the board construction. For additional information, see the
AN-617 Application Note, Wafer Level Chip Scale Package,
available at www.analog.com.
ΨJB is the junction-to-board thermal characterization parameter
with units of °C/W. ΨJB of the package is based on modeling and
calculation using a 4-layer board. The JESD51-12, Guidelines for
Reporting and Using Electronic Package Thermal Information,
states that thermal characterization parameters are not the same
as thermal resistances. ΨJB measures the component power
flowing through multiple thermal paths rather than a single
path as in thermal resistance, θJB. Therefore, ΨJB thermal paths
include convection from the top of the package as well as
radiation from the package, factors that make ΨJB more useful
in real-world applications. Maximum junction temperature (TJ)
is calculated from the board temperature (TB) and power
dissipation (PD) using the formula
TJ = TB + (PD × ΨJB)
See JESD51-8 and JESD51-12 for more detailed information
about ΨJB.
THERMAL RESISTANCE
θJA, θJC, and ΨJB are specified for the worst-case conditions, that
is, a device soldered in a circuit board for surface-mount
packages.
Table 5. Thermal Resistance
Package Type
θJA
θJC
ΨJB
Unit
8-Lead LFCSP
36.4 23.5 13.3 °C/W
ESD CAUTION
Rev. A | Page 5 of 23

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]