DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

ADSP-BF538 View Datasheet(PDF) - Analog Devices

Part Name
Description
Manufacturer
ADSP-BF538
ADI
Analog Devices ADI
ADSP-BF538 Datasheet PDF : 56 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
ADSP-BF538/ADSP-BF538F
In addition to the three general-purpose programmable timers,
a fourth timer is also provided. This extra timer is clocked by the
internal processor clock and is typically used as a system tick
clock for generation of operating system periodic interrupts.
SERIAL PORTS (SPORTs)
The ADSP-BF538/ADSP-BF538F processors incorporate four
dual-channel synchronous serial ports for serial and multipro-
cessor communications. The SPORTs support the following
features:
• I2S capable operation.
• Bidirectional operation – Each SPORT has two sets of inde-
pendent transmit and receive pins, enabling eight channels
of I2S stereo audio.
• Buffered (8-deep) transmit and receive ports – Each port
has a data register for transferring data words to and from
other processor components and shift registers for shifting
data in and out of the data registers.
• Clocking – Each transmit and receive port can either use an
external serial clock or generate its own, in frequencies
ranging from (fSCLK/131,070) Hz to (fSCLK/2) Hz.
• Word length – Each SPORT supports serial data words
from 3 to 32 bits in length, transferred most significant bit
first or least significant bit first.
• Framing – Each transmit and receive port can run with or
without frame sync signals for each data word. Frame sync
signals can be generated internally or externally, active high
or low, and with either of two pulsewidths and early or late
frame sync.
• Companding in hardware – Each SPORT can perform
A-law or μ-law companding according to ITU recommen-
dation G.711. Companding can be selected on the transmit
and/or receive channel of the SPORT without additional
latencies.
• DMA operations with single-cycle overhead – Each SPORT
can automatically receive and transmit multiple buffers of
memory data. The processor can link or chain sequences of
DMA transfers between a SPORT and memory.
• Interrupts – Each transmit and receive port generates an
interrupt upon completing the transfer of a data word or
after transferring an entire data buffer or buffers through
DMA.
• Multichannel capability – Each SPORT supports 128 chan-
nels out of a 1024 channel window and is compatible with
the H.100, H.110, MVIP-90, and HMVIP standards.
SERIAL PERIPHERAL INTERFACE (SPI) PORTS
The ADSP-BF538/ADSP-BF538F processors incorporate three
SPI compatible ports that enable the processor to communicate
with multiple SPI compatible devices.
The SPI interface uses three pins for transferring data: two data
pins (master output-slave input, MOSIx, and master input-slave
output, MISOx) and a clock pin (serial clock, SCKx). An SPI
chip select input pin (SPIxSS) lets other SPI devices select the
Preliminary Technical Data
processor. For SPI0, seven SPI chip select output pins
(SPI0SEL7–1) let the processor select other SPI devices. The SPI
select pins are reconfigured GPIO pins. SPI1 and SPI2 have a
single SPI select for SPI point-to-point communication. Using
these pins, the SPI ports provide a full-duplex, synchronous
serial interface, which supports both master/slave modes and
multimaster environments.
The SPI ports’ baud rate and clock phase/polarities are pro-
grammable, and it has an integrated DMA controller,
configurable to support transmit or receive data streams. Each
SPI’s DMA controller can only service unidirectional accesses at
any given time.
The SPI port’s clock rate is calculated as:
SPI Clock Rate
=
-------------f--S---C---L---K--------------
2 × SPIx_BAUD
Where the 16-bit SPIx_BAUD register contains a value of 2 to
65,535.
During transfers, the SPI port simultaneously transmits and
receives by serially shifting data in and out on its two serial data
lines. The serial clock line synchronizes the shifting and sam-
pling of data on the two serial data lines.
TWO WIRE INTERFACE
The ADSP-BF538/ADSP-BF538F processors have 2 two wire
interface (TWI) modules that are compatible with the Philips
Inter-IC bus standard. The TWI modules offer the capabilities
of simultaneous master and slave operation, support for 7-bit
addressing and multimedia data arbitration. The TWI also
includes master clock synchronization and support for clock
low extension.
The TWI interface uses two pins for transferring clock (SCLx)
and data (SDAx) and supports the protocol at speeds up to
400 kbits/sec.
The TWI interface pins are compatible with 5V logic levels.
UART PORTs
The ADSP-BF538/ADSP-BF538F processors incorporate three
full-duplex Universal Asynchronous Receiver/Transmitter
(UART) ports, which are fully compatible with PC standard
UARTs. The UART ports provide a simplified UART interface
to other peripherals or hosts, supporting full-duplex, DMA sup-
ported, asynchronous transfers of serial data. The UART ports
include support for 5 to 8 data bits, 1 or 2 stop bits, and none,
even, or odd parity. The UART ports support two modes of
operation:
• PIO (programmed I/O) – The processor sends or receives
data by writing or reading I/O mapped UART registers.
The data is double buffered on both transmit and receive.
• DMA (direct memory access) – The DMA controller trans-
fers both transmit and receive data. This reduces the
number and frequency of interrupts required to transfer
data to and from memory. Each UART has two dedicated
Rev. PrD | Page 10 of 56 | May 2006

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]