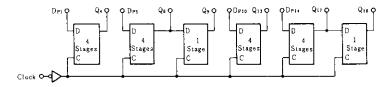
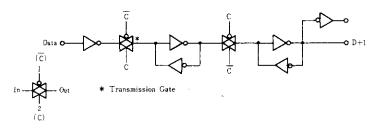
HD14006B

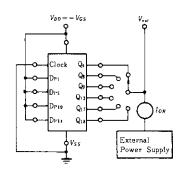

18-bit Static Shift Register

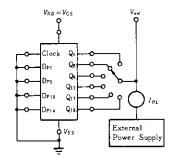
The HD14006B shift register is comprised of four separate shift register sections sharing a common clock: two sections have four stages and two sections have five stages with an output tap on both the fourth and fifth stages. This makes it possible to obtain a shift register of 4, 5, 8, 9, 10, 12, 13, 14, 16, 17 or 18 bits by appropriate selection of inputs and outputs. This part is particularly useful in serial shift registers and time delay circuits.

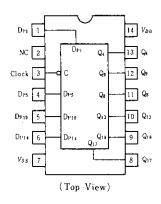

■ FEATURES

- Output Transitions Occur on the Falling Edge of the Clock Pulse
- Quiescent Current = 5nA/pkg typ @5V
- Fully Static Operation
- 8MHz Shift Rate Typical
- Can be Cascaded to Provide Longer Shift Register Lengths
- Supply Voltage Range = 3 to 18V
- Capable of Driving One Lowpower Schottky TTL Load Over the Rated Temperature Range
- Pin-for-Pin Replacement for CD4006B and MC14006B

■ BLOCK DIAGRAM




■LOGIC DIAGRAM

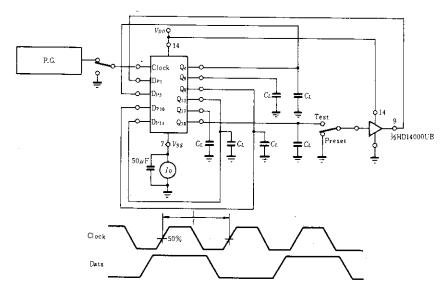

■DC CHARACTERISTIC TEST CIRCUIT

●1_{OH}

■ PIN ARRANGEMENT

TRUTH TABLE

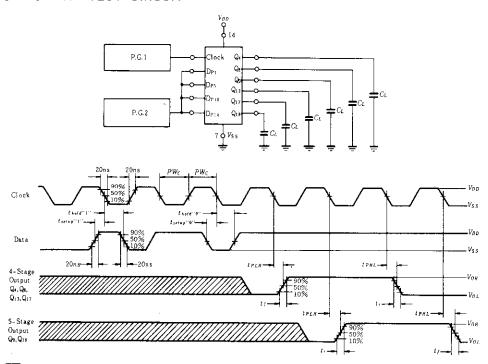
D _n	С	Q_{n+1}
0		0
1 .		1
×		Q,


X: Don't Care

■ ELECTRICAL CHARACTERISTICS

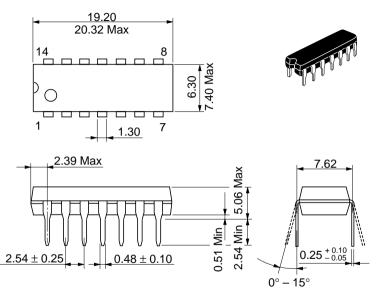
Characteristic Syml	Symbol		Test Conditions	4	40 ℃		25 ℃			85℃		
Characteristic	Symbol	$V_{DD}(V)$	lest Conditions	min	max	min	typ	max	min	max	v Uni	
1	<u> </u>	5.0	Via=VDD or 0	_	0.05		0	0.05	_	0.05	v	
	Vol	10		_	0.05	_	0	0.05	-	0.05		
Output Voltage		15		_	0.05	-	0	0.05	_	0.05		
Output Voltage		5.0	$V_{ix}=0$ or V_{DD}	4.95	_	4.95	5.0	_	4.95	_	v	
	V _{OH}	10		9.95	-	9.95	10		9.95	-		
		15		14.95		14.95	15		14.95			
14		5.0	$V_{out}=4.5$ or $0.5\mathrm{V}$		1.5	_	2.25	1.5	_	1.5	4	
	VIL	10	$V_{out} = 9.0 \text{ or } 1.0 \text{V}$		3.0	_	4.50	3.0	_	3.0		
Input Voltage		15	$V_{\rm out} = 13.5 \text{ or } 1.5 \text{V}$		4.0	_	6.75	4.0	-	4.0		
Impor Voltage	5.0	V _{rut} =0.5 or 4.5V	3.5	_	3.5	2.75	-	3.5				
	V_{tB}	10	V _{out} =1.0 or 9.0V	7.0		7.0	5.50	-	7.0		v	
		15	$V_{\text{out}} = 1.5 \text{ or } 13.5 \text{V}$	11.0		11.0	8.25		11.0		1	
Output Drive Current	Іон	5.0	$V_{OH}=2.5\mathrm{V}$	-1.0	-	-0.8	-1.7	_	-0.6		mA	
		5.0	$V_{OH}=4.6V$	-0.2	_	-0.16	-0.36		-0.12	_		
		10	$V_{0H} = 9.5 \text{V}$	-0.5	_	-0.4	0.9		-0.3			
		15	$V_{OH} = 13.5 \text{V}$	-1.4	_	-1.2	-3.5		-1.0	_	İ	
	IoL	5.0	$V_{OL}=0.4V$	0.52	_	0.44	0.88	_	0.36		mA	
		10	$V_{OL}=0.5V$	1.3		1.1	2.25		0.9	_		
		15	$V_{OL} = 1.5 \text{V}$	3.6	_	3.0	8.8		2.4			
Input Current	I_{in}	15		_	±0.3	_	±0.00001	±0.3		±1.0	μA	
Input Capacitance	Cin	<u> </u>	$V_{in} = 0$		_	_	5.0	7.5	_		pF	
Quiescent Current IDD		5.0	Zero Signal,	_	20	_	0.005	20	_	150	μΑ	
	IDD	10			40	_	0,010	40		300		
		15	per Package		80	_	0.015	80	-	600		
		5.0	Dynamic $\div I_{DD}$,	T -	_	_	1.3		_			
Total Supply Current*	I_{T}	10	Per Gate,	_	_	_	2.6				μA	
		15	$C_L = 50 \text{pF}, f = 1 \text{kHz}$		_		3.9				/	

^{*} To calculate total supply current at frequency other than 1kHz. $@V_{DB} = 5.0V$ $I_7 = (1.3 \mu A/kHz)f + I_{DB}$, $@V_{DB} = 10V$ $I_7 = (2.6 \mu A/kHz)f + I_{DB}$, $@V_{DB} = 15V$ $I_7 = (3.9 \mu A/kHz)f + I_{DB}$


■POWER DISSIPATION TEST CIRCUIT AND WAVEFORM

SWITCHING CHARACTERISTICS ($C_L = 50 \,\mathrm{pF}$, $Ta = 25 \,^{\circ}\mathrm{C}$)

Characteristic	Symbol	$V_{DD}(V)$	min	typ	max	Unit
		5.0	-	180	400	ns
Output Rise Time		10	_	90	200	
		15	_	65	160	
		5.0	_	100	200	ns
Output Fall Time	t_f	10	_	50	100	
		15	-	37	80	
	t _{PLH} ,	5.0	_	305	600	ns
Propagation Delay Time	t _{PHL}	10	_	110	275	
	T P H L	15		80	200	
	PW_{c}	5.0	250	100		ns
Clock Pulse Width		10	125	60		
		15	95	40		
		5.0		5.0	2.0	MHz
Clock Pulse Frequency	PRF	10		8.3	4.0	
		15	_	12	6.0	
		5.0			15	μѕ
Clock Pulse Rise and Fall Time	t_{+}, t_{f}	10	_	_	15	
		15	_	_	15	
		5.0	0	-50	_	ns
Setup Time	tsecup	10	0	-15	_	
		15	0	-8.0		
·		5.0	220	75	_	
Hold Time	$t_{\it hatd}$	10	110	25	_	ns
		15	90	20	_	


■ SWITCHING TIME TEST CIRCUIT

Output state can change since data previously clocked in might be in either state.

Unit: mm

Hitachi Code	DP-14
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	0.97 g

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HTACHI

Hitachi, Ltd.

Semiconductor & Integrated Circuits.

Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

http:semiconductor.hitachi.com/

NorthAmerica URL Europe Asia (Singapore)

http://www.hitachi-eu.com/hel/ecg http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Taiwan) Asia (HongKong) http://www.hitachi.com.hk/eng/bo/grp3/index.htm

http://www.hitachi.co.jp/Sicd/indx.htm Japan

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0

Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom

Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218

Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.