
Vishay High Power Products

Schottky Rectifier, 2 x 8 A

SHAY

PRODUCT SUMMARY				
I _{F(AV)} 2 x 8 A				
V _R	60 to 100 V			

FEATURES

- 175 °C T_J operation
- Center tap configuration
- Low forward voltage drop
- High frequency operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Guard ring for enhanced ruggedness and long term reliability
- Designed and qualified for industrial level

DESCRIPTION

This center tap Schottky rectifier series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	CHARACTERISTICS	VALUES	UNITS			
I _{F(AV)}	Rectangular waveform	16	А			
V _{RRM}		60 to 100	V			
I _{FSM}	t _p = 5 μs sine	850	А			
V _F	8 Apk, T _J = 125 °C (per leg)	0.58	V			
TJ	Range	- 55 to 175	°C			

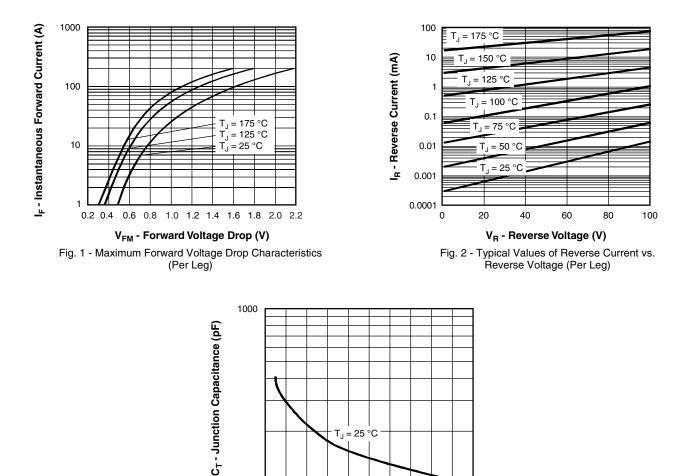
VOLTAGE RATINGS					
PARAMETER	SYMBOL	16CTQ060G	16CTQ080G	16CTQ100G	UNITS
Maximum DC reverse voltage	V _R	60	80	100	V
Maximum working peak reverse voltage	V _{RWM}	00			

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS	
Maximum average per leg		$V_{\rm V}$ 50 % duty cycle at T _C = 148 °C, rectangular waveform		8	А	
See fig. 5 per device	I _{F(AV)}			16	~	
Maximum peak one cycle non-repetitive		5 µs sine or 3 µs rect. pulse	Following any rated load condition and with rated	650	•	
surge current per leg I _{FSM} See fig. 7		10 ms sine or 6 ms rect. pulse	V _{RRM} applied	210	A	
Non-repetitive avalanche energy per leg	E _{AS}	T _J = 25 °C, I _{AS} = 0.50 A, L = 60 mH		7.50	mJ	
Repetitive avalanche current per leg I _{AR}		Current decaying linearly to zero in 1 μ s Frequency limited by T _J maximum V _A = 1.5 x V _R typical		0.50	А	

16CTQ...G Series

Vishay High Power Products Schottky Rectifier, 2 x 8 A

ELECTRICAL SPECIFICATIONS					
SYMBOL	TEST CONDITIONS		VALUES	UNITS	
V _{FM} ⁽¹⁾	8 A	T _J = 25 °C	0.72	V	
	16 A		0.88		
	8 A	T _J = 125 °C	0.58		
	16 A		0.69		
I _{RM} ⁽¹⁾	T _J = 25 °C	$V_R = rated V_R$	0.28	mA	
	T _J = 125 °C		7.0		
V _{F(TO)}	$T_J = T_J$ maximum		0.415	V	
r _t			11.07	mΩ	
CT	V_R = 5 V_{DC} (test signal range 100 kHz to 1 MHz) 25 °C		500	pF	
L _S	Measured lead to lead 5 mm from package body		8.0	nH	
dV/dt	Rated V _R 10 000 V/µs			V/µs	
	SYMBOL V _{FM} ⁽¹⁾ I _{RM} ⁽¹⁾ V _{F(TO)} r _t C _T L _S	$\begin{array}{c} \mbox{SYMBOL} & \mbox{TEST CO} \\ \mbox{V_{FM}}^{(1)$} & \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{tabular}{ c c c c } \hline SYMBOL & TEST CONDITIONS \\ \hline & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline \hline $	$\begin{array}{c c c c c c c } SYMBOL & TEST CONDITIONS & VALUES \\ \hline SYMBOL & T ST CONDITIONS & VALUES \\ \hline \\ 8 & A & T_J = 25 \ ^{\circ}C & 0.88 \\ \hline & 8 \ A & T_J = 125 \ ^{\circ}C & 0.69 \\ \hline & 16 \ A & T_J = 125 \ ^{\circ}C & 0.69 \\ \hline & 16 \ A & T_J = 125 \ ^{\circ}C & 0.69 \\ \hline & T_J = 125 \ ^{\circ}C & 0.28 \\ \hline & T_J = 125 \ ^{\circ}C & 7.0 \\ \hline & 0.28 & 7.0 \\ \hline & 0.28 & 7.0 \\ \hline & 0.415 & 7.0 \\ \hline & 0.415 & 11.07 \\ \hline & C_T & V_R = 5 \ V_{DC} \ (test signal range 100 \ kHz to 1 \ MHz) \ 25 \ ^{\circ}C & 500 \\ \hline & L_S & Measured lead to lead 5 \ mm \ from \ package \ body & 8.0 \\ \hline \end{array}$	


Note

 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction and stora temperature range	ge	T _J , T _{Stg}		- 55 to 175	°C	
Maximum thermal resistance junction to case per leg	9,	R _{thJC}		3.25	°C (M	
Maximum thermal resistance junction to case per package	-	R _{thJC}	DC operation	1.63	°C/W	
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	0.50		
Approvimate weight				2	g	
Approximate weight	Approximate weight			0.07	oz.	
Manualian tanan	minimum			6 (5)	kgf ⋅ cm	
Mounting torque	maximum			12 (10)	(lbf · in)	
Marking device				16CTC	2060G	
			Case style TO-220AB	16CT0	2080G	
				16CTC	16CTQ100G	

Schottky Rectifier, 2 x 8 A Vishay High Power Products

T_{.1} = 25 °C

40

V_R - Reverse Voltage (V) Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

60

80

100

100 0

20

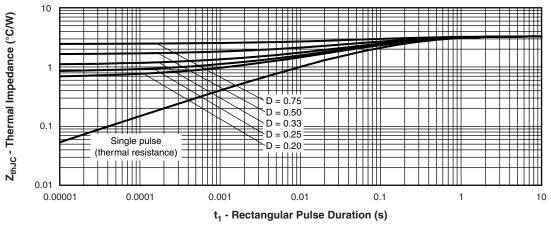
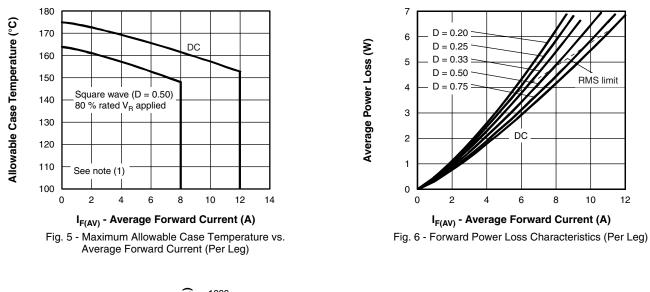
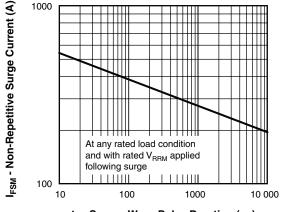




Fig. 4 - Maximum Thermal Impedance ZthJC Characteristics (Per Leg)

16CTQ...G Series

Vishay High Power Products Schottky Rectifier, 2 x 8 A

t_p - Square Wave Pulse Duration (μs)

Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)

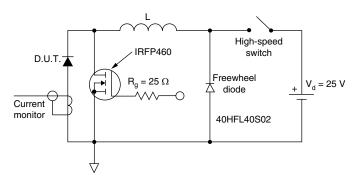
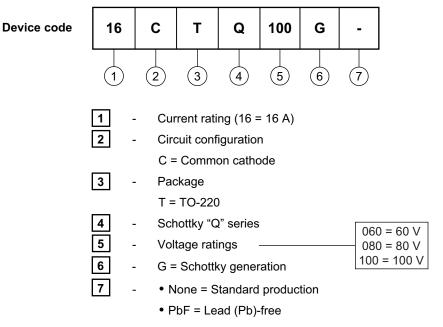


Fig. 8 - Unclamped Inductive Test Circuit

Note

 $\begin{array}{l} \mbox{Pd} = \mbox{Forward power loss} = \mbox{I}_{F(AV)} \times \mbox{V}_{FM} \mbox{ at } (\mbox{I}_{F(AV)}/\mbox{D}) \mbox{ (see fig. 6);} \\ \mbox{Pd}_{REV} = \mbox{Inverse power loss} = \mbox{V}_{R1} \times \mbox{I}_{R} \mbox{ (1 - D); I}_{R} \mbox{ at } \mbox{V}_{R1} = \mbox{10 V} \end{array}$


SHA

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;

Schottky Rectifier, 2 x 8 A Vishay High Power Products

ORDERING INFORMATION TABLE

Tube standard pack quantity: 50 pieces

LINKS TO RELATED DOCUMENTS				
Dimensions http://www.vishay.com/doc?95222				
Part marking information	http://www.vishay.com/doc?95225			
SPICE model	http://www.vishay.com/doc?95279			

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.