1N914 THRU 1N4454

Features

Silicon Epitaxial Planar Diodes

DO-35

for general purpose and switching
The types 1N4149, 1N4447 and 1N4449 are also available in glass case DO-34.
DO-34

DIMENSIONS					
DIM	inches		mm		Note
	Min.	Max.	M in.	Max.	
A	-	0.114	-	2.9	
B	-	0.075	-	1.9	d
C	-	0.017	-	0.42	d
D	0.630	-	16.0	-	

DIMENSIONS					
DIM	inches		mm		Note
	M in.	Max.	M in.	Max.	
A	-	0.154	-	3.9	
B	-	0.075	-	1.9	d
C	-	0.020	-	0.52	d
D	1.083	-	27.50	-	

Electrical Characteristics

Type	Peak reverse voltage	Max. aver. rectified current	Max. power dissip. at $25^{\circ} \mathrm{C}$	Max. junction temperature	Max. forward voltage drop		Max. reverse current		Max. reverse recovery time	
	$\mathrm{V}_{\mathrm{RM}} \mathrm{V}$	$\mathrm{I}_{0} \mathrm{~mA}$	$\mathrm{P}_{\text {tot }} \mathrm{mW}$	Ti, ${ }^{\circ} \mathrm{C}$	$V_{F} \mathrm{~V}$	$\begin{aligned} & \text { at } \\ & \mathrm{I}_{\mathrm{F}} \mathrm{~mA} \end{aligned}$	$\mathrm{I}_{\mathrm{n}} \mathrm{nA}$	$\stackrel{\text { at }}{V_{R}} \mathrm{~V}$	$\mathrm{t}_{\mathrm{r}} \mathrm{nS}$	Conditions
1N914	100	75	500	200	1.0	10	25	20	Max. 4.0	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{R}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$, to $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$
1N4149 ${ }^{\text {1) }}$	100	150	500	200	1.0	10	25	20	Max. 4.0	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{R}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$, to $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$
1N4150	50	200	500	200	1.0	200	100	50	Max. 4.0	$\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{R}}=10$ to 200 mA , to $0.1 \mathrm{I}_{\mathrm{F}}$
1N4152	40	150	400	175	0.55	0.10	50	30	Max. 2.0	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{R}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$, to $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$
1N4153	75	150	400	175	0.55	0.10	50	50	Max. 2.0	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{R}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$, to $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$
1N4154	35	$150{ }^{2)}$	500	200	1.0	0.10	100	25	Max. 2.0	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{R}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$, to $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$
1N4447 ${ }^{\text {1) }}$	100	150	500	200	1.0	20	25	20	Max. 4.0	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{R}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$, to $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$
1N4449 ${ }^{1)}$	100	150	500	200	1.0	30	25	20	Max. 4.0	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{R}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$, to $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$
1N4450	40	150	400	175	0.54	0.50	50	30	Max. 4.0	$I_{F}=I_{R}=10 \mathrm{~mA}$, to $I_{R}=1 \mathrm{~mA}$
1N4451	40	150	400	175	0.50	0.10	50	30	Max. 10	$\mathrm{I}_{\mathrm{F}}=I_{R}=10 \mathrm{~mA}$, to $\mathrm{I}_{\mathrm{R}}=1 \mathrm{~mA}$
1N4453	30	150	400	175	0.55	0.01	50	20	-	-
1N4454	75	150	400	175	1.0	10	100	50	Max. 4.0	$I_{F}=I_{R}=10 \mathrm{~mA}$, to $I_{R}=1 \mathrm{~mA}$

Notes:
(1) These diodes are also avaiable in glass case DO-34
(2) Valid provided that leads at a distance of 8 mm from case are kept at ambient temperature

Parameters for diodes in case DO-34: $\quad \mathrm{P}_{\text {tot }}=300 \mathrm{~mW} \quad \mathrm{~T}_{\mathrm{s}}=-65$ to $+175^{\circ} \mathrm{C}$

$$
\mathrm{T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \quad \mathrm{R}_{\text {tha }} \leqslant 0.4 \mathrm{~K} / \mathrm{mW}
$$

