PIN Diodes for RF Switching and Attenuating

Technical Data

Features

- Low Harmonic Distortion
- Large Dynamic Range
- Low Series Resistance
- Low Capacitance

Description/Applications

These general purpose switching diodes are intended for low power switching applications such as RF duplexers, antenna switching matrices, digital phase shifters, and time multiplex filters. The 5082-3188 is optimized for VHF/UHF bandswitching.

The RF resistance of a PIN diode is a function of the current flowing in the diode. These current controlled resistors are specified for use in control applications such as variable RF attenuators, automatic gain control circuits, RF modulators, electrically tuned filters, analog phase shifters, and RF limiters.

Outline 15 diodes are available on tape and reel. The tape and reel specification is patterned after RS-296-D.

1N5719, 1N5767, 5082-3001, 5082-3039, 5082-3077, 5082-3080/81, 5082-3188, 5082-3379

Mechanical Specifications

The Agilent Outline 15 package has a glass hermetic seal with dumet leads. The lead finish is 955 tin-lead (SnPb) for all PIN
diodes. The leads on the Outline 15 package should be restricted so that the bend starts at least 1/ 16 inch (1.6 mm) from the glass body. Typical package inductance and capacitance are 2.5 nH and
0.13 pF , respectively. Marking is by digital coding with a cathode band.

General Purpose Diodes

Electrical Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Part Number 5082-	MaximumTotalCapacitance $C_{T}(\mathrm{pF})$	Minimum Breakdown Voltage $V_{\text {BR }}(V)$	Maximum Residual Series Resistance $R_{S}(\Omega)$	Effective Carrier Lifetime τ (ns)	Reverse Recovery Time $t_{\text {rr }}$ (ns)
General Purpose Switching and Attenuating					
3001	0.25	200	1.0	100 (min.)	100 (typ.)
3039	0.25	150	1.25	100 (min.)	100 (typ.)
1N5719	0.3**	150	1.25	100 (min.)	100 (typ.)
3077	0.3	200	1.5	100 (min.)	100 (typ)
Band Switching					
3188	1.0*	35	0.6**	70 (typ.)*	12 (typ.)
TestConditions	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$	$V_{R}=V_{B R}$	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{F}}=50 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{F}}=20 \mathrm{~mA}$
	$* V_{\mathrm{R}}=20 \mathrm{~V}$	Measure	$*_{F}=20 \mathrm{~mA}$	$\mathrm{I}_{\mathrm{R}}=250 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{R}}=10 \mathrm{~V}$
	$* * V_{R}=100 \mathrm{~V}$	$\mathrm{I}_{\mathrm{R}} \leq 10 \mu \mathrm{~A}$	$\left.*^{*}\right\|_{F}=10 \mathrm{~mA}$	$*_{\text {F }}=10 \mathrm{~mA}$	90\%Recovery
	$\mathrm{f}=1 \mathrm{MHz}$		$\mathrm{f}=100 \mathrm{MHz}$	$*_{\text {R }}=6 \mathrm{~mA}$	

Notes:

Typical CW power switching capability for a shunt switch in a 50Ω system is 2.5 W .

RF Current Controlled Resistor Diodes

Electrical Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Part Number	Effective Carrier Lifetime t ($\mathbf{n s}$)	Min. Breakdown Voltage V_{BR} (V)	Max. Residual Series Resistance $\mathbf{R}_{\mathrm{S}}(\Omega)$	Max. Total Capacitance $\mathrm{C}_{\mathrm{T}}(\mathrm{pF})$	$\begin{gathered} \text { High } \\ \text { Resistance } \\ \text { Limit, } R_{H}(W) \end{gathered}$		Low Resistance Limit, R_{L} (W)		Max. Difference in Resistance vs. Bias Slope, Dc
					Min.	Max.	Min.	Max.	
5082-3080	1300 (typ.)	100	2.5	0.4	1000			8**	
1N5767*	1300 (typ.)	100	2.5	0.4	1000			8**	
5082-3379	1300 (typ.)	50		0.4				8**	
5082-3081	2500 (typ.)	100	3.5	0.4	1500			8**	
Test Conditions	$\begin{aligned} & I_{F}=50 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{R}}=250 \mathrm{~mA} \end{aligned}$	$V_{R}=V_{B R}$ Measure $\mathrm{I}_{\mathrm{R}} \leq 10 \mu \mathrm{~A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA} \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & V_{R}=50 \mathrm{~V} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 . \\ & \mathrm{f}=10 \end{aligned}$	1 mA MHz	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}= \\ & \mathrm{I}_{\mathrm{F}}= \\ & \mathrm{f}=1 \end{aligned}$	0 mA mA** MHz	Batch Matched at $I_{F}=0.01 \mathrm{~mA}$ and 1.0 mA $\mathrm{f}=100 \mathrm{MHz}$

*The 1N5767 has the additional specifications:
$\tau=1.0 \mathrm{msec}$ minimum
$\mathrm{I}_{\mathrm{R}}=1 \mu \mathrm{~A}$ maximum at $\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$
$\mathrm{V}_{\mathrm{F}}=1 \mathrm{~V}$ maximum at $\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$.

Typical Parameters at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ (unless otherwise noted)

Figure 1. F orward Current vs. Forward Voltage.

Figure 4. Typical Capacitance vs. Reverse Voltage.

Figure 7. Typical Second Order Intermodulation Distortion.

Figure 2. Typical RF Resistance vs. Forward Bias Current.

Figure 5. Typical Capacitance vs. Reverse Voltage.

Figure 8. Typical Cross Intermodulation Distortion.

Figure 3. Typical RF Resistance vs. Forward Bias Current.

Figure 6. Typical Reverse Recovery Time vs. Forward Current for Various Reverse Driving Voltages.

Diode Package Marking

1N5xxx 5082-xxxx
would be marked:
1Nx
xx
xxx
xx
YWW
YWW
where xxxx are the last four digits of the $1 N x x x x$ or the $5082-x x x x$ part number. Y is the last digit of the calendar year. WW is the work week of manufacture.

Examples of diodes manufactured during workweek 45 of 1999:
1N5712 5082-3080 would be marked:
1N5 30
$712 \quad 80$
$945 \quad 945$

