Boca Semiconductor Corp.

MAXIMUM RATINGS

Rating	Symbol	2N3019 2N3020	2N3700	Unit	
Collector-Emitter Voltage	VCEO	80	80	Vdc	
Collector-Base Voltage	V _{CBO}	140	140	Vdc	
Emitter-Base Voltage	VEBO	7.0	7.0	Vdc	
Collector Current — Continuous	lc	1.0	1.0	Adc	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.8 4.6	0.5 2.85	Watts mW/°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6	1.8 10.6	Watts mW/°C	
Operating and Storage Junction Temperature Range	T _J , T _{stg}	- 65 to	°C		

THERMAL CHARACTERISTICS

Characteristic	Symbol	2N3019 2N3020	2N3700	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	217	350	°C/W
Thermal Resistance, Junction to Case	$R_{\theta}JC$	35	97	°C/W

2N3019* 2N3020

CASE 79-04, STYLE 1 TO-39 (TO-205AD)

2N3700*

CASE 22-03, STYLE 1 TO-18 (TO-206AA)

GENERAL TRANSISTORS

NPN SILICON

★2N3019 and 2N3700 are Motorola designated preferred devices.

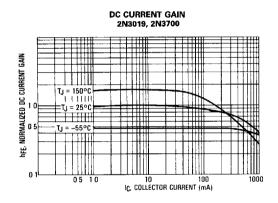
ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

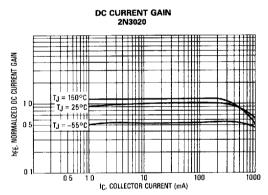
Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				··
Collector-Emitter Breakdown Voltage(1) (I _C = 30 mAdc, I _B = 0)	V(BR)CEO	80	_	Vdc
Collector-Base Breakdown Voltage ($I_C = 100 \mu Adc$, $I_E = 0$)	V _(BR) CBO	140	_	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 μAdc, I _C = 0)	V(BR)EBO	7.0	_	Vdc
Collector Cutoff Current $(V_{CB} = 90 \text{ Vdc}, I_E = 0)$ $(V_{CB} = 90 \text{ Vdc}, I_E = 0, T_A = +150^{\circ}\text{C})$	ІСВО	_	0.01 10	μAdc
Emitter Cutoff Current (VEB = 5.0 Vdc, IC = 0)	IEBO	_	0.010	μAdc

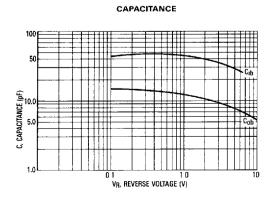
ON CHARACTERISTICS

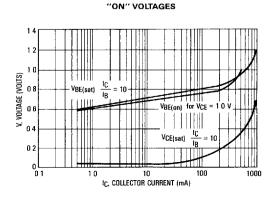
DC Current Gain		hFE			_
(I _C = 0.1 mAdc, V _{CE} = 10 Vdc)	2N3700, 2N3019	'-	50	_	
	2N3020		30	100	
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})(1)$	2N3700, 2N3019		90	_	
	2N3020		40	120	
(I _C = 150 mAdc, V _{CF} = 10 Vdc)(1)	2N3700, 2N3019		100	300	
32	2N3020		40	120	
$(I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, T_C = -55^{\circ}\text{C})(1)$	2N3700, 2N3019		40	_	
$(I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})(1)$	2N3700, 2N3019		50		
	2N3020		30	100	
(I _C = 1.0 Adc, V _{CE} = 10 Vdc)(1)	All Types		15	-	
Collector-Emitter Saturation Voltage(1)		V _{CE(sat)}		_	Vdc
(IC = 150 mAdc, IB = 15 mAdc)				0.2	
(I _C = 500 mAdc, I _B = 50 mAdc)			—	0.5	
Base-Emitter Saturation Voltage(1)		V _{BE(sat)}		1.1	Vdc
(I _C = 150 mAdc, I _B = 15 mAdc)		1			

SMALL-SIGNAL CHARACTERISTICS

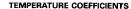

Current-Gain — Bandwidth Product		fΤ		i	MHz
$(I_C = 50 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 20 \text{ MHz})$	2N3020		80	_	
	2N3019, 2N3700	1	100	400	

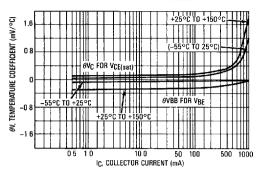

2N3019 2N3020 2N3700

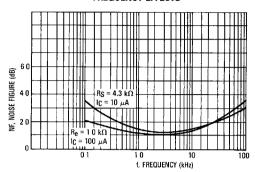

ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C unless otherwise noted.)


Characteristic		Symbol	Min	Max	Unit
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)		C _{obo}	_	12	pF
Input Capacitance (VEB = 0.5 Vdc, I _C = 0, f = 1.0 MHz		C _{ibo}	_	60	рF
Small-Signal Current Gain (IC = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz)	2N3700, 2N3019 2N3020	h _{fe}	80 30	400 200	_
Collector Base Time Constant (I _E = 10 mAdc, V _{CB} = 10 Vdc, f = 79.8 MHz)	2N3019, 2N3020 2N3700	rb′C _C	_ 15	400 400	ps
Noise Figure (I _C = 100 μ Adc, V _{CE} = 10 Vdc, R _S = 1.0 k ohms, f = 1.0 kHz)	2N3019, 2N3700	NF	_	4	dB

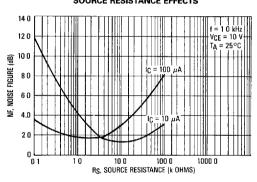
⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 1.0%.

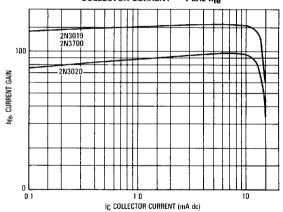


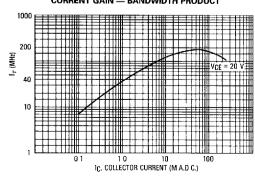


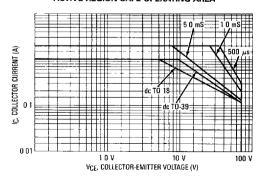


2N3019 2N3020 2N3700




FREQUENCY EFFECTS


SOURCE RESISTANCE EFFECTS


CURRENT GAIN BANDWIDTH PRODUCT versus COLLECTOR CURRENT — 1 kHz hfe

CURRENT GAIN — BANDWIDTH PRODUCT

ACTIVE REGION SAFE OPERATING AREA

