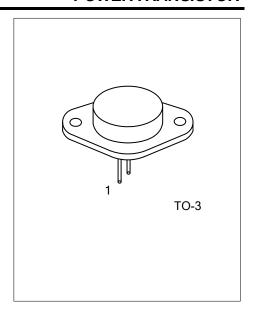
2N3773/2N6099

POWER TRANSISTOR

COMPLEMENTARY SILICON TRANSISTORS


DESCRIPTION

The UTC 2N3773/2N6099 are complement silicon power transistors designed for high power audio, disk head positions and other linear applications. These device can be used in power switching circuits such as relay or solenoid drivers, DC to DC converters or inverts.

FEATURES


- * Complement Characterized for linear operation
- * High DC Current Gain and low saturation voltage h_{FE}>15(8A, 4V)

 $V_{CE(SAT)}$ <1.4 $V(I_C$ =8A, I_B =0.8A)

ORDERING INFORMATION

Ordering Number		Doolsono	Pin Assignment			Doolsing	
Lead Free	Halogen Free	Package	1	2	3	Packing	
2N3773L-T30-Y	2N3773G-T30-Y	TO-3	В	Е	С	Tray	
2N6099L-T30-Y	2N6099G-T30-Y	TO-3	В	E	С	Tray	

www.unisonic.com.tw 1 of 3 QW-R205-001,Ba

^{*} For Low Distortion Complementary Designs

■ ABSOLUTE MAXIMUM RATING (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Collector-Base Voltage		V_{CBO}	160	V
Collector-Emitter Voltage		V_{CEO}	140	V
Emitter-Base Voltage		V_{EBO}	7	V
Collector-Emitter Voltage		V_{CEX}	160	V
Power Dissipation	T _C =25°C	P _C	150	W
	Dertate Above 25°C		0.855	W/°C
Collector Current	Continuous	- I _C	16	Α
	Peak		30	Α
Base Current	Continuous		4	Α
	Peak	I _B	15	Α
Junction Temperature		TJ	150	$^{\circ}\mathbb{C}$
Storage Temperature		T _{STG}	-55 ~ +150	$^{\circ}\mathbb{C}$

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Case	θ_{JC}	1.17	°C/W

■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS							
Collector-Base Breakdown Voltage	BV_CBO	I _C =0.2A, I _B =0	160			V	
Collector-Emitter Sustaining Voltage	BV_CEX	I_C =0.1A, $V_{BE(OFF)}$ =1.5V, R_{BE} =100 Ω	160			V	
Collector-Emitter Sustaining Voltage	BV_CER	I_C =0.1A, R_{BE} =100 Ω	150			V	
Collector Cut-off Current	I _{CBO}	V _{CB} =140V, I _E =0			2	mA	
Emitter Cut-off Current	I _{EBO}	V_{BE} =7V, I_{C} =0			5	mA	
Collector Cut-off Current	I _{CEX}	V _{CE} =140V,V _{BE(OFF)} =1.5V		2		mA	
		V _{CE} =140V,V _{BE(OFF)} =1.5V,T _C =150°C		10		mA	
ON CHARACTERISTICS							
DC Current Gain (Note)	h _{FE1}	V_{CE} =4V, I_{C} =8A	15		60		
	h _{FE2}	V_{CE} =4V, I_{C} =16A	5				
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	I _C =8A, I _B =800mA			1.4	V	
		I _C =16A, I _B =3.2A			4	V	
Base-Emitter Saturation Voltage	$V_{BE(ON)}$	I_C =8A, V_{CE} =4V			2.2	V	
DYNAMIC CHARACTERISTICS			_	_	_		
Small Signal Current Gain	h_{FE}	I _C =1A, V _{CE} =4V, f=1kHz	40				
Magnitade Of Commom-Emitter							
Small Signal, Short Circuit Forward	h _{FE}	I _C =1A, f=50kHz	4				
Current Transfer Ratio							
Second Breakdown Collector With	1 /b t=10(non ropotivo) \/ =100\/		1.5			Α	
ase Forward Biased		t=1s(non-repetive), V _{CE} =100V	1.5				

Note: Pulse Test: P_W<=300µs, Duty Cycle<=2%

^{2.} Pulse Test: Pw<=5ms, Duty Cycle<=10%

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.