

Linear Systems replaces discontinued Siliconix 2N4392

The 2N4392 features many of the superior characteristics of JFETs which make it a good choice for demanding analog switching applications and for specialized amplifier circuits.

2N4392 Benefits:

- Low Error Voltage
- High-Speed Analog Circuit Performance
- Negligible "Off-Error," Excellent Accuracy
- Good Frequency Response, Low Glitches
- Eliminates Additional Buffering

2N4392 Applications:

- **Analog Switches**
- Choppers, Sample-and-Hold
- Normally "On" Switches, Current Limiters

FEATURES					
DIRECT REPLACEMENT FOR SILICONIX 2N4392					
LOW ON RESISTANCE	$r_{DS(on)} \le 60\Omega$				
LOW GATE OPERATING CURRENT	$I_{D(off)} = 5pA$				
FAST SWITCHING $t_{(ON)} \le 15 \text{ns}$					
ABSOLUTE MAXIMUM RATINGS ¹ @ 25°C (unless othe	rwise noted)				
Maximum Temperatures					
Storage Temperature	-65°C to +200°C				
Operating Junction Temperature	-55°C to +200°C				
Maximum Power Dissipation					
Continuous Power Dissipation	1800mW				
MAXIMUM CURRENT					
Gate Current (Note 1) I _G = 50mA					
MAXIMUM VOLTAGES					
Gate to Drain Voltage / Gate to Source Voltage -40V					

2N4392 ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	MIN	TYP.	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage	-40				$I_G = -1\mu A$, $V_{DS} = 0V$
V _{GS(off)}	Gate to Source Cutoff Voltage	-2		-5	V	$V_{DS} = 20V, I_{D} = 1nA$
$V_{GS(F)}$	Gate to Source Forward Voltage		0.7	1		$I_G = 1mA$, $V_{DS} = 0V$
V _{DS(on)}	Drain to Source On Voltage		0.25			$V_{GS} = 0V$, $I_D = 3mA$
V _{DS(on)}	Drain to Source On Voltage		0.3	0.4		$V_{GS} = 0V$, $I_D = 6mA$
V _{DS(on)}	Drain to Source On Voltage		0.35			$V_{GS} = 0V, I_D = 12mA$
I _{DSS}	Drain to Source Saturation Current ²	25		75	mA	$V_{DS} = 20V, V_{GS} = 0V$
I _{GSS}	Gate Reverse Current		-5	-100		$V_{GS} = -20V, \ V_{DS} = 0V$
I _G	Gate Operating Current		-5			$V_{DG} = 15V, I_{D} = 10mA$
			5		pA	$V_{DS} = 20V, V_{GS} = -5V$
I _{D(off)}	Drain Cutoff Current		5	100		$V_{DS} = 20V, V_{GS} = -7V$
			5	1		$V_{DS} = 20V, V_{GS} = -12V$
r _{DS(on)}	Drain to Source On Resistance			60	Ω	$V_{GS} = 0V$, $I_D = 1$ mA

2N4392 DYNAMIC ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	TYP	MIN	MAX	UNITS	CONDITIONS
g fs	Forward Transconductance	6			mS	$V_{DS} = 20V, I_{D} = 1 \text{mA}, f = 1 \text{kHz}$
g _{os}	Output Conductance	25			μS	$V_{DS} = 20V, I_D = 1mA, f = 1kHz$
r _{ds(on)}	Drain to Source On Resistance			60	Ω	$V_{GS} = 0V$, $I_D = 0A$, $f = 1kHz$
C _{iss}	Input Capacitance	12		14		$V_{DS} = 20V$, $V_{GS} = 0V$, $f = 1MHz$
C _{rss}	Reverse Transfer Capacitance	3.3			pF	$V_{DS} = 0V$, $V_{GS} = -5V$, $f = 1MHz$
C _{rss}		3.2		3.5	- P.	$V_{DS} = 0V$, $V_{GS} = -7V$, $f = 1MHz$
C _{rss}		2.8				$V_{DS} = 0V$, $V_{GS} = -12V$, $f = 1MHz$
e _n	Equivalent Input Noise Voltage	3			nV/√Hz	$V_{DS} = 10V$, $I_{D} = 10$ mA, $f = 1$ kHz

2N4392 SWITCHING ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTIC	TYP	MIN	MAX	UNITS	CONDITIONS
t _{d(on)}		2		15		
t _r	Turn On Time	2		5	nc	V = 10V V = 0V
t _{d(off)}		6		35	ns	$V_{DD} = 10V, V_{GS(H)} = 0V$
t _f	Turn Off Time	13		20]	

Notes: 1. Absolute ratings are limiting values above which serviceability may be impaired

S

TO-18 (Bottom View)

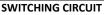
2. Pulse test: PW ≤ 300µs, Duty Cycle ≤ 3%

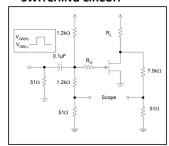
2N4392 SWITCHING CIRCUIT PARAMETERS

V _{GS(L)}	-7V
R_L	1600Ω
I _{D(on)}	6mA

Available Packages:

2N4392 in TO-18 2N4392 in bare die.


Contact Micross for full package and die dimensions


Micross Components Europe

Tel: +44 1603 788967

Email: chipcomponents@micross.com Web: http://www.micross.com/distribution

