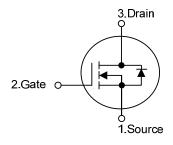


UNISONIC TECHNOLOGIES CO., LTD

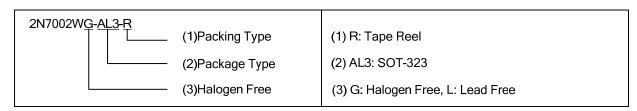
2N7002W Preliminary Power MOSFET

300mA, 60V N-CHANNEL POWER MOSFET

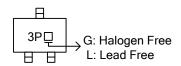

■ DESCRIPTION

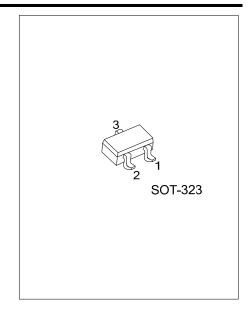
The UTC **2N7002W** uses advanced technology to provide excellent $R_{\text{DS(ON)}}$, low gate charge and operation with low gate voltages. This device is suitable for use as a load switch or in PWM applications.

■ FEATURES


- * High Density Cell Design for Low R_{DS(ON)}.
- * Voltage Controlled Small Signal Switch
- * Rugged and Reliable
- * High Saturation Current Capability

■ SYMBOL




ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking
Lead Free	Halogen Free	Package	1	2	3	Packing
2N7002WL-AL3-R	2N7002WG-AL3-R	SOT-323	S	G	D	Tape Reel

MARKING

■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise specified.)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	60	V	
Drain-Gate Voltage (R _{GS} ≤1MΩ)		V_{DGR}	60	V	
Gate Source Voltage	Continuous	\/	±20	V	
	Non Repetitive(t _P <50µs)	V_{GSS}	±40		
Drain Current	Continuous	_	300	mA	
Diaili Cultent	Pulsed	I _D	800		
Power Dissipation		D	200	mW	
Derated Above 25°C		P_D	1.6	mW/°C	
Junction Temperature		T_J	+ 150	°C	
Storage Temperature		T_{STG}	-55 ~ +150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	625 (Note1)	°C/W

■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage	BV _{DSS}	V_{GS} =0V, I_D =10 μ A	60			V		
Drain-Source Leakage Current	I _{DSS}	V _{DS} =60V, V _{GS} =0V			1	μΑ		
Gate-Source Leakage Current	I_{GSSF}	V _{GS} =20V, V _{DS} =0V			100	nA		
Gate-Source Leakage Current	I_{GSSR}	V_{GS} =-20V, V_{DS} =0V			-100	nA		
ON CHARACTERISTICS (Note2)								
Gate Threshold Voltage	$V_{GS(TH)}$	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$	1	2.1	2.5	V		
Drain-Source On-Voltage	V _{DS (ON)}	$V_{GS} = 10V, I_D = 300mA$	0.6 3.		3.75	V		
Dialii-Source Oil-Voltage		$V_{GS} = 5.0V, I_{D} = 50mA$		0.09	1.5	V		
Static Drain-Source On-Resistance	D	V _{GS} =10V, I _D =300mA ,T _J =125°C			13.5	Ω		
Static Drain-Source On-Resistance	R _{DS (ON)}	V_{GS} =5.0V, I_D =50mA			7.5	Ω		
DYNAMIC CHARACTERISTICS								
Input Capacitance	C _{ISS}	V_{DS} =25V, V_{GS} =0V,f=1.0MHz		20	50	pF		
Output Capacitance	Coss			11	25	pF		
Reverse Transfer Capacitance	C _{RSS}			4	5	pF		
Turn-On Time	4	V_{DD} =30V, R_L =150 Ω , I_D =200mA,		20		nS		
Turn-On Time	t _{ON}	V_{GS} =10V, R_{GEN} =25 Ω			20	113		
Turn-Off Time	toff	V_{DD} =30V, R_L =25 Ω , I_D =200mA,			20	nS		
Turn-On Time	UOFF	V_{GS} =10V, R_{GEN} =25 Ω			20			
DRAIN-SOURCE DIODE CHARACTE	RISTICS AN	ID MAXIMUM RATINGS						
Drain-Source Diode Forward Voltage	V_{SD}	V _{GS} =0V, Is=300mA (Note)		0.88	1.5	V		
Maximum Pulsed Drain-Source Diode					0.8	Α		
Forward Current	I _{SM}				0.0			
Maximum Continuous Drain-Source Diode Forward Current	ls				300	mA		

Note: 1. Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inch. Minimum land pad size.

2. Pulse Test: Pulse Width≤300µs, Duty Cycle≤2.0%

TEST CIRCUIT AND WAVEFORM

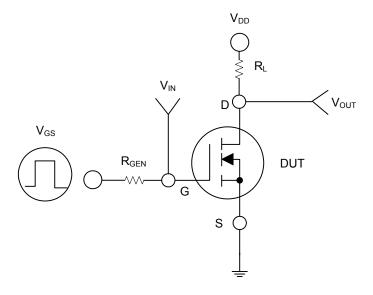


Fig. 1

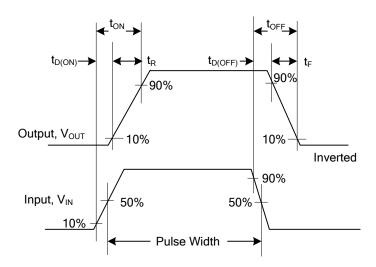


Fig. 2 Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.