SILICON PNP EPITAXIAL PLANAR TRANSISTOR

- DESCRIPTION

The UTC 2SA1693 is a silicon PNP epitaxial planar transistor, it uses UTC's advanced technology to provide the customers with high DC current gain and high collector-base breakdown voltage, etc.

The UTC 2SA1693 is suitable for audio and general purpose, etc.

- FEATURES
* High DC current gain
* High collector-base breakdown voltage

TO-3P

■ ORDERING INFORMATION

Ordering Number		Package	Pin Assignment			Packing
Lead Free	Halogen Free		1	2	3	
2SA1693L-x-T3P-T	2SA1693G-x-T3P-T	TO-3P	B	C	E	Tube

Note: Pin Assignment: B: Base C: Collector E: Emitter

2SA1693L-x-T3P-T		
	L_ (1)Packing Type	(1) T: Tube
	- (2)Package Type	(2) T3P: TO-3P
	- (3)Rank	(3) x : reference to Classification of $h_{F E}$
	(4)Lead Free	(4) L: Lead Free, G: Halogen Free

- ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	RATINGS	UNIT
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	-80	V
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	-80	V
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	-6	V
Collector Current	I_{C}	-6	A
Base Current	I_{B}	-3	A
Collector Power Dissipation $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	PC_{C}	60	W
Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {STG }}$	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Collector Cut-Off Current		$\mathrm{I}_{\text {cbo }}$	$\mathrm{V}_{C B}=-80 \mathrm{~V}$			-10	$\mu \mathrm{A}$
Emitter Cut-Off Current		$\mathrm{l}_{\text {Ebo }}$	$\mathrm{V}_{\text {EB }}=-6 \mathrm{~V}$			-10	$\mu \mathrm{A}$
Collector-Emitter Breakdown Voltage		BV CEO	$1 \mathrm{l}=-50 \mathrm{~mA}$	-80			V
DC Current Gain		$\mathrm{h}_{\text {FE }}$	$\mathrm{V}_{\mathrm{CE}}=-4 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-2 \mathrm{~A}$	50		180	
Collector-Emitter Saturation Voltage		$\mathrm{V}_{\text {CEISAT }}$	$\mathrm{I}_{\mathrm{C}}=-2 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-0.2 \mathrm{~A}$			-1.5	V
Current Gain Bandwidth Product		f_{T}	$\mathrm{V}_{\text {CE }}=-12 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0.5 \mathrm{~A}$		20		MHz
Output Capacitance		Cob	$\mathrm{V}_{\mathrm{CB}}=-10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		150		pF
Switching time	Turn-on time	t_{ON}	$\begin{aligned} & -V_{C C}=-30 V, R_{L}=10 \Omega, I_{C}=-3 A, \\ & I_{B 1}=0.3 \mathrm{~A} I_{B 2}=0.3 \mathrm{~A} \end{aligned}$		0.18		$\mu \mathrm{S}$
	Storage time	ts			1.10		$\mu \mathrm{S}$
	Fall time	t_{F}			0.21		$\mu \mathrm{S}$

- CLASSIFICATION OF $\mathbf{h}_{\text {FE }}$

RANK	O	P	Y
RANGE	$50 \sim 100$	$70 \sim 140$	$90 \sim 180$

- TEST CIRCUIT

[^0]
[^0]: UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

