HEADPHONE AMPLIFIER FOR CD-ROMS

DESCRIPTION

The UTC 3544 is digital-source dual headphone amplifier. The UTC 3544 has a fixed gain of 6dB so that external gain setting is unnecessary. The UTC 3544 has internal mute function so that prevention of the popping sound when power is turned on and off is greatly simplified. Also, The UTC 3544 is equipped with thermal shutdown circuits to prevent damage from short circuits.

FEATURES

*Internal mute function to prevent popping sounds when the power is turned on and off.

*Built-in thermal shutdown circuit (150) to prevent damage to the IC if a short circuit occurs.

Devices that use the headphone output from CD-ROMs, CDs, MDs, personal computers, notebook computers, camcorders, etc.

ABSOLUTE MAXIMUM RATINGS(Ta=25)

PARAMETER	SYMBOL	RATINGS	UNIT
Applied voltage	Vmax	7.0	V
Power dissipation	PD	450 *	mW
Operating temperature	Topr	-25 ~ +75	
Storage temperature	Tstg	-55 ~ +125	

*Reduced by 4.5mW for each increase in Ta of 1 over 25

RECOMMENDED OPERATING CONDITIONS (Ta=25)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Power supply voltage	Vcc	2.8		6.5	V

UTC UNISONIC TECHNOLOGIES CO. LTD

*Pb-free plating product number: 3544L

QW-R107-040,A

1

BLOCK DIAGRAM

UTC UNISONIC TECHNOLOGIES CO. LTD 2

UTC 3544 LINEAR INTEGRATED CIRCUIT **PIN DESCRIPTIONS** PIN NO. PIN NAME I/O PIN VOLTAGE INTERNAL EQUIVALENT CIRCUIT FUNCTION Output pin Vcc OUT1 1 0 2.1V 1 (7)10k OUT2 7 0 2.1V (Vcc=5V) Mute control pin Vcc (set to low for prevention of ¢ popping noise when power is MUTE 0.1V turned on and off). 2 I (2) (When open) Operating: High Muting: Low(open) 90 Vcc Input pin 3 IN1 I 2.1V (3) ∮ 180k BIAS (5) 5 IN2 I 2.1V (Vcc=5V) Bias pin(the Vcc external 47 µ F capacitor also serves as the anti-pop time 6 BIAS I/O 2.1V 60k constant, (Vcc=5V) therefore make the 6 proper →BIAS considerations be 60k changing it).

UTC UNISONIC TECHNOLOGIES CO. LTD 3

GND

Vcc

Т

L

-

-

4

5

ELECTRICAL CHARACTERISTICS (Ta=25 ,Vcc=5.0V,RL=32 ,VIN= -6dBV, f=1kHz)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Quiescent current	Ιq	V _{IN} =0Vrms	4	7	10	mA
Mute pin control voltage	V _{TM}		0.3	0.7	1.6	V
Voltage gain	Gvc		4	6	8	dB
Voltage gain difference between channels	Gvc		-0.5	0	0.5	dB
Total harmonic distortion	THD	BW=20 ~ 20kHz		0.02	0.1	%
Rated output 1	Po1	R∟=32 ,THD<0.1%	25	31		mW
Rated output 2	Po ₂	R∟=16 ,THD<0.1%	50	62		mW
Output noise voltage	VNO	BW=20 ~ 20kHz,Rg=0		-93	-85	dBV
Channel separation	CS	Rg=0	82	90		dB
Mute attenuation	ATT	Rg=0	70	80		dB
Ripple rejection	RR	frr=100Hz,Vrr= -20dBV	50	57		dB

MEASUREMENT CIRCUIT

UTC UNISONIC TECHNOLOGIES CO. LTD 4

	MEASUR	EMEN		DITIONS	5					
	SIGNAL		SW TABLE						CONDITIONS	
		SW1	SW3	SW5	SW7	SW8A	SW8B	WONTOR	CONDITIONS	
	lq	1	1	1	1	2	OFF	lq		
	Vтм									
	Gvc	1	2	2	1	2	ON	V1AC,V2AC	f=1kHz,Vin1/2=-6dBV, Vtm=1.6V	
	Gvc								GVC1 – GVC2	
	THD	1	2	2	1	2	ON	V1AC,V2AC	fin=1kHz,Vı№1/2= -6dBV, VTM=1.6V	
	Po1	1	2	2	1	2	ON	V1AC,V2AC	fin=1kHz,Vı№1/2= -6dBV, Vтм=1.6V	
	Po ₂	2	2	2	2	2	ON	V1AC,V2AC	fin=1kHz,Vın1/2= -6dBV, V⊤m=1.6V	
	Vno	1	1	1	1	2	ON	V1AC,V2AC		
	CS	1 1	1 2	2 1	1 1	2 2	2 ON V1AC,V2A 2 ON V1AC,V2A		fin=1kHz,VIN2= -6dBV, VTM=1.6V fin=1kHz,VIN1= -6dBV, VTM=1.6V	
	ATT	1	2	2	1	2	ON	V1AC,V2AC	fin=1kHz,Vıℕ1/2= -6dBV, Vтм=0.3VB	
	RR	1	1	1	1	1	ON	V1AC,V2AC	Vrr= -20dBV, frr=100Hz	

CIRCUIT OPERATION

Rising edge timing

A: MUTE period(use with MUTE=Low to prevent the popping noise when the power is turned on and off).

B: MUTE release time(used to prevent the popping noise at the release of MUTE with the external C2 and R2 and therefore possesses a time constant, so be careful of the timing).

C: MUTE start time(also possesses a time constant like the MUTE release time).

UTC UNISONIC TECHNOLOGIES CO. LTD 5

APPLICATION EXAMPLE

EXPLANATION OF EXTERNAL XOMPONENTS

(1)Input coupling capacitor(C3 and C5)

Determined by the low-band cut-off frequency. Since the input impedance for this IC is 180k ,it can be determined by the formula below, but take into consideration the fluctuations, ambent temperature, etc. (a multi-layered ceramic capacitor is recommended).

C3(C5)=1/(2 × 180k × f)

(2)BIAS capacitor(C6)

47 μ F when Vcc=5V,and 33 μ F when Vcc=3V.If the capacitance is lowered too much,the electrical characteristics will be adversely affected and popping noise may occur. Therefore, take th sufficient considerations before changing these values.

(3)MUTE pin for anti-pop measures(R2 and C2)

Possesses an impedance of 190k with respect to GND, so if R2 is increased too much, the MUTE mode may become unable to be released.

(4)Output coupling capacitor(C1 and C7)

Determined by the low-band cutoff frequency. As the output load resistance value RL(assuming that for output protection or current limiting, a resistor Rx will be inserted), it can be determined by the formula below. $C1(C7)=1/(2 \times (RL+Rx) \times f)$

```
(5)Input gain adjustment resistor(R3 and R4)
```

Input gain adjustment can by performed by external resistors R3 and R4, The desired gain can be set by the formula givev below.

Gvc=6+20log(90k /(90k +R3)) [dB]

UTC UNISONIC TECHNOLOGIES CO. LTD 6

ELECTRICAL CHARACTERISTIC CURVES

UTC UNISONIC TECHNOLOGIES CO. LTD 7

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

UTC UNISONIC TECHNOLOGIES CO. LTD 9