feATURES

- 3V to 40V Input Voltage Range
- 2.5A, 60V Integrated NPN Power Switch
- Boundary Mode Operation
- No Transformer Third Winding or Optoisolator Required for Regulation
- Improved Primary-Side Winding Feedback Load Regulation
- $V_{\text {OUT }}$ Set with Two External Resistors
- BIAS Pin for Internal Bias Supply and Power NPN Driver
- Programmable Soft-Start
- Programmable Power Switch Current Limit
- Thermally Enhanced 16-Lead TSSOP

APPLICATIONS

- Industrial, Automotive and Medical Isolated Power Supplies

DESCRIPTIOn

The LT® 3575 is a monolithic switching regulator specifically designed for the isolated flyback topology. No third winding or optoisolator is required for regulation. The part senses the isolated output voltage directly from the primary side flyback waveform. A 2.5A, 60V NPN power switch is integrated along with all control logic into a 16-lead TSSOP package.
The LT3575 operates with input supply voltages from 3 V to 40 V , and can deliver output power up to 14 W with no external power switch.The LT3575 utilizes boundary mode operation to provide a small magnetic solution with improved load regulation.

The output voltage is easily set with two external resistors and the transformer turns ratio. Off the shelf transformers are available for many applications.
$\overline{\boldsymbol{\Sigma T}}$, LT, LTC, LTM, Burst Mode, Linear Technology and the Linear logo are registered trademarks and No RSENSE and ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

5V Isolated Flyback Converter

ABSOLUTE MAXIMUM RATINGS

SW 60 V
$\mathrm{V}_{\mathrm{IN}}, \overline{\mathrm{SHDN}} / \mathrm{UVLO}, \mathrm{R}_{\mathrm{FB}}$, BIAS.................................... 40 V

Maximum Junction Temperature $125^{\circ} \mathrm{C}$
Operating Junction Temperature Range (Note 2)
LT3575E, LT3575I \qquad .. $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

PIn CONFIGURATION

FE PACKAGE 16-LEAD PLASTIC TSSOP
$T_{\text {JMAX }}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=38^{\circ} \mathrm{C} / \mathrm{W}, \theta_{\mathrm{JC}}=10^{\circ} \mathrm{C} / \mathrm{W}$ EXPOSED PAD (PIN 17) IS GND, MUST BE CONNECTED TO GND

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT3575EFE\#PBF	LT3575EFE\#TRPBF	$3575 F E$	$16-$ Lead Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT3575IFE\#PBF	LT3575IFE\#TRPBF	$3575 F E$	$16-$ Lead Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Input Voltage Range		-	3		40	V
Quiescent Current	$\begin{array}{\|l\|} \hline S S=0 \mathrm{~V} \\ \mathrm{~V} \text { SHDN/UVLO }=0 \mathrm{~V} \\ \hline \end{array}$			$\begin{gathered} 4.5 \\ 0 \end{gathered}$	1	mA $\mu \mathrm{A}$
Soft-Start Current	SS $=0.4 \mathrm{~V}$			7		$\mu \mathrm{A}$
$\overline{\overline{S H D N} / U V L O ~ P i n ~ T h r e s h o l d ~}$	UVL0 Pin Voltage Rising	\bullet	1.15	1.22	1.32	V
$\overline{\text { SHDN/UVLO Pin Hysteresis Current }}$	$\mathrm{V}_{\text {UVLO }}=1 \mathrm{~V}$		2.2	2.8	3.2	$\mu \mathrm{A}$
Soft-Start Threshold				0.7		V
Maximum Switching Frequency				1000		kHz
Switch Current Limit	$\mathrm{R}_{\text {ILIM }}=10 \mathrm{k}$		2.8	3.5	4.2	A
Minimum Current Limit	$\mathrm{V}_{\mathrm{C}}=0 \mathrm{~V}$			400		mA
Switch $V_{\text {CESAT }}$	$\mathrm{I}_{\text {SW }}=0.5 \mathrm{~A}$			75	125	mV
$\mathrm{R}_{\text {REF }}$ Voltage	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$	-	$\begin{aligned} & 1.21 \\ & 1.20 \end{aligned}$	1.23	$\begin{aligned} & 1.25 \\ & 1.26 \end{aligned}$	V
R REF Voltage Line Regulation	$3 \mathrm{~V}<\mathrm{V}_{\text {IN }}<40 \mathrm{~V}$			0.01	0.03	\%/V
$\mathrm{R}_{\text {REF }}$ Pin Bias Current	(Note 3)	\bullet		100	600	nA
						$3575 \dagger$

ELECTRICAL CHARACTERISTICS The \bullet denotes the speciifications which apply vere the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{I N}=12 \mathrm{~V}$, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
${ }_{\text {I REF }}$ Reference Current	Measured at R_{FB} Pin with $\mathrm{R}_{\text {REF }}=6.49 \mathrm{k}$		190		$\mu \mathrm{A}$
Error Amplifier Voltage Gain	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$		150		V/V
Error Amplifier Transconductance	$\Delta \mathrm{l}=10 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{I}}=3 \mathrm{~V}$		150		$\mu \mathrm{mhos}$
Minimum Switching Frequency	$\mathrm{V}_{\mathrm{C}}=0.35 \mathrm{~V}$		40		kHz
TC Current into R REF	$\mathrm{R}_{\text {TC }}=20.1 \mathrm{k}$		27.5		$\mu \mathrm{A}$
BIAS Pin Voltage	$\mathrm{I}_{\text {BIAS }}=30 \mathrm{~mA}$	2.9	3	3.1	V

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LT3575E is guaranteed to meet performance specifications from $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ junction temperature. Specifications over the $-40^{\circ} \mathrm{C}$
to $125^{\circ} \mathrm{C}$ operating junction temperature range are assured by design characterization and correlation with statistical process controls. The LT3575I is guaranteed over the full $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ operating junction temperature range.
Note 3: Current flows out of the $R_{\text {REF }}$ pin.

TYPICAL PGRFORMAOCE CHARACTGRISTICS $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.

3575 G01

Quiescent Current

Bias Pin Voltage

LT3575

TYPICAL PERFORMANCE CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.

3575 G08

PIn functions

NC (Pins 1, 15, 16): No Connect Pins. Can be left open or connected to any ground plane.
$\mathrm{V}_{\text {IN }}$ (Pin 2): Input Voltage. This pin supplies current to the internal start-up circuitry and as a reference voltage for the DCM comparator and feedback circuitry. This pin must be locally bypassed with a capacitor.
SW (Pins 3, 4): Collector Node of the Output Switch. This pin has large currents flowing through it. Keep the traces to the switching components as short as possible to minimize electromagnetic radiation and voltage spikes.
BIAS (Pin 5): Bias Voltage. This pin supplies current to the switch driver and internal circuitry of the LT3575. This pin must be locally bypassed with a capacitor. This pin may also be connected to $\mathrm{V}_{\text {IN }}$ if a third winding is not used and if $\mathrm{V}_{\text {IN }} \leq 15 \mathrm{~V}$. If athird winding is used, the BIAS voltage should be lower than the input voltage for proper operation.
SHDN/UVLO (Pin 6): Shutdown/Undervoltage Lockout. A resistor divider connected to $\mathrm{V}_{\text {IN }}$ is tied to this pin to program the minimum input voltage at which the LT3575 will operate. At a voltage below $\sim 0.7 \mathrm{~V}$, the part draws no quiescent current. When below 1.22 V and above $\sim 0.7 \mathrm{~V}$, the part will draw $7 \mu \mathrm{~A}$ of current, but internal circuitry will remain off. Above 1.22 V , the internal circuitry will start and a $7 \mu \mathrm{~A}$ current will be fed into the SS pin. When this pin falls below $1.22 \mathrm{~V}, 2.8 \mu \mathrm{~A}$ will be pulled from the pin to provide programmable hysteresis for UVLO.
SS (Pin 7): Soft-Start Pin. Place a soft-start capacitor here to limit start-up inrush current and output voltage ramp rate. Switching starts when the voltage at this pin reaches $\sim 0.7 \mathrm{~V}$.
$\mathbf{R I L I M}$ (Pin 8): Maximum Current LimitAdjustPin. A resistor should be tied to this pin to ground to set the current limit. Use a 10k resistor for the full current capabilities
of the switch.
\mathbf{V}_{C} (Pin 9): Compensation Pin for Internal Error Amplifier. Connect a series RC from this pin to ground to compensate the switching regulator. A 100pF capacitor in parallel helps eliminate noise.
$\mathbf{R}_{\text {FB }}$ (Pin 10): Input Pinfor External Feedback Resistor. This pin is connected to the transformer primary $\left(\mathrm{V}_{S W}\right)$. The ratio of this resistor to the R REF resistor, times the internal bandgap reference, determines the output voltage (plus the effect of any non-unity transformer turns ratio). The average current through this resistor during the flyback period should be approximately $200 \mu \mathrm{~A}$. For nonisolated applications, this pin should be connected to V_{IN}.
$\mathbf{R}_{\text {REF }}$ (Pin 11): Input Pin for External Ground-Referred Reference Resistor. This resistor should be in the range of 6 k , but for convenience, need not be precisely this value. For nonisolated applications, a traditional resistor voltage divider may be connected to this pin.
TC (Pin 12): Output Voltage Temperature Compensation. Connect a resistor to ground to produce a current proportional to absolute temperature to be sourced into the $R_{\text {REF }}$ node. $I_{T C}=0.55 \mathrm{~V} / \mathrm{R}_{\mathrm{TC}}$.
TEST (Pin 13): This pin is used for testing purposes only and must be connected to ground for the part to operate properly.
GND (Pin 14, Exposed Pad Pin 17): Ground. The exposed pad of the package provides both electrical contact to ground and good thermal contact to the printed circuit board. The exposed pad must be soldered to the circuit board for proper operation and should be well connected with many vias to an internal ground plane.

LT3575

BLOCK DIAGRAM

OPERATION

The LT3575 is a current mode switching regulator IC designed specifically for the isolated flyback topology. The special problem normally encountered in such circuits is that information relating to the output voltage on the isolated secondary side of the transformer must be communicated to the primary side in orderto maintain regulation. Historically, this has been done with optoisolators or extra transformer windings. Optoisolator circuits waste output power and the extra components increase the cost and physical size of the power supply. Optoisolators can also exhibit trouble due to limited dynamic response, nonlinearity, unit-to-unit variation and aging over life. Circuits employing extra transformer windings also exhibit deficiencies. Using an extra winding adds to the transformer's physical size and cost, and dynamic response is often mediocre.

The LT3575 derives its information about the isolated output voltage by examining the primary side flyback pulse waveform. In this manner, no optoisolator nor extra transformer winding is required for regulation. The output voltage is easily programmed with two resistors. Since this IC operates in boundary control mode, the output voltage is calculated from the switch pin when the secondary current is almost zero. This method improves load regulation without external resistors and capacitors.
The Block Diagram shows an overall view of the system. Many of the blocks are similar to those found in traditional switching regulators including: internal bias regulator, oscillator, logic, current amplifier and comparator, driver, and output switch. The novel sections include a special flyback error amplifier and a temperature compensation circuit. In addition, the logic system contains additional logic for boundary mode operation, and the sampling error amplifier.

The LT3575 features a boundary mode control method, wherethe part operates atthe boundary between continuous conduction mode and discontinuous conduction mode. The V_{C} pin controls the current level just as it does in normal current mode operation, but instead of turning the switch on at the start of the oscillator period, the part detects when the secondary side winding current is zero.

Boundary Mode Operation

Boundary mode is a variable frequency, current-mode switching scheme. The switch turns on and the inductor current increases until V_{C} pin controlled current limit. The voltage on the SW pin rises to the output voltage divided by the secondary-to-primary transformer turns ratio plus the input voltage. When the secondary current through the diode falls to zero, the SW pin voltage falls below $\mathrm{V}_{\text {IN }}$. A discontinuous conduction mode (DCM) comparator detects this event and turns the switch back on.

Boundary mode returns the secondary current to zero every cycle, so the parasitic resistive voltage drops do not cause load regulation errors. Boundary mode also allows the use of a smaller transformer compared to continuous conduction mode and no subharmonic oscillation.
At low output currents the LT3575 delays turning on the switch, and thus operates in discontinuous mode. Unlike a traditional flyback converter, the switch has to turn on to update the output voltage information. Below 0.6 V on the V_{C} pin, the current comparator level decreases to its minimum value, and the internal oscillator frequency decreases in frequency. With the decrease of the internal oscillator, the part starts to operate in DCM. The output current is able to decrease while still allowing a minimum switch off-time for the error amp sampling circuitry. The typical minimum internal oscillator frequency with V_{C} equal to 0 V is 40 kHz .

APPLICATIONS INFORMATION

ERROR AMPLIFIER-PSEUDO DC THEORY

In the Block Diagram, the $R_{\text {REF }}(\mathrm{R} 4)$ and $\mathrm{R}_{\mathrm{FB}}(\mathrm{R} 3)$ resistors can be found. They are external resistors used to program the outputvoltage. The LT3575 operates much the same way as traditional current mode switchers, the major difference being a different type of error amplifier which derives its feedback information from the flyback pulse.

Operation is as follows: when the output switch, Q1, turns off, its collector voltage rises above the $\mathrm{V}_{\text {IN }}$ rail. The amplitude of this flyback pulse, i.e., the difference between it and $V_{I N}$, is given as:

$$
V_{\text {FLBK }}=\left(V_{\text {OUT }}+V_{F}+I_{S E C} \bullet E S R\right) \bullet N_{P S}
$$

$V_{F}=D 1$ forward voltage
$I_{\text {SEC }}=$ Transformer secondary current
ESR $=$ Total impedance of secondary circuit
$N_{\text {PS }}=$ Transformer effective primary-to-secondary turns ratio

The flyback voltage is then converted to a current by the action of R_{FB} and Q2. Nearly all of this current flows through resistor $\mathrm{R}_{\text {REF }}$ to form a ground-referred voltage. This voltage is fed into the flyback error amplifier. The flyback error amplifier samples this output voltage information when the secondary side winding current is zero. The error amplifier uses a bandgap voltage, 1.23V, as the reference voltage.

The relatively high gain in the overall loop will then cause the voltage at the $R_{\text {REF }}$ resistor to be nearly equal to the bandgap reference voltage V_{BG}. The relationship between $V_{\text {FLBK }}$ and $V_{B G}$ may then be expressed as:

$$
\begin{aligned}
& \alpha\left(\frac{V_{\text {FLBK }}}{R_{F B}}\right)=\frac{V_{B G}}{R_{R E F}} \text { or, } \\
& V_{\text {FLBK }}=V_{B G}\left(\frac{R_{F B}}{R_{\text {REF }}}\right)\left(\frac{1}{\alpha}\right)
\end{aligned}
$$

$\alpha=$ Ratio of Q1 I_{C} to I_{E}, typically ≈ 0.986
$V_{B G}=$ Internal bandgap reference

In combination with the previous $\mathrm{V}_{\text {FLBK }}$ expression yields an expression for $V_{\text {OUT }}$, in terms of the internal reference, programming resistors, transformerturns ratio and diode forward voltage drop:

$$
V_{O U T}=V_{B G}\left(\frac{R_{F B}}{R_{R E F}}\right)\left(\frac{1}{\alpha N_{P S}}\right)-V_{F}-I_{\text {SEC }}(E S R)
$$

Additionally, it includes the effect of nonzero secondary output impedance (ESR). This term can be assumed to be zero in boundary control mode. More details will be discussed in the next section.

Temperature Compensation

The first term in the $\mathrm{V}_{\text {Out }}$ equation does not have a temperature dependence, but the diode forward drop has a significant negative temperature coefficient. To compensate for this, a positive temperature coefficient current source is connected to the $R_{\text {REF }}$ pin. The current is set by a resistor to ground connected to the TC pin. To cancel the temperature coefficient, the following equation is used:

$$
\begin{aligned}
& \frac{\delta V_{F}}{\delta T}=-\frac{R_{F B}}{R_{T C}} \cdot \frac{1}{N_{P S}} \cdot \frac{\delta V_{T C}}{\delta T} \text { or, } \\
& R_{T C}=\frac{-R_{F B}}{N_{P S}} \cdot \frac{1}{\delta V_{F} / \delta T} \cdot \frac{\delta V_{T C}}{\delta T} \approx \frac{R_{F B}}{N_{P S}}
\end{aligned}
$$

$\left(\delta V_{F} / \delta_{T}\right)=$ Diode's forward voltage temperature coefficient

$$
\left(\delta \mathrm{V}_{\mathrm{TC}} / \delta \mathrm{T}\right)=2 \mathrm{mV}
$$

$$
V_{T C}=0.55 \mathrm{~V}
$$

The resistor value given by this equation should also be verified experimentally, and adjusted if necessary to achieve optimal regulation overtemperature.
The revised output voltage is as follows:

$$
\begin{aligned}
V_{\text {OUT }}= & V_{B G}\left(\frac{R_{F B}}{R_{\text {REF }}}\right)\left(\frac{1}{N_{P S} \alpha}\right)-V_{F} \\
& -\left(\frac{V_{T C}}{R_{T C}}\right) \cdot \frac{R_{F B}}{N_{P S} \alpha}-I_{\text {SEC }}(E S R)
\end{aligned}
$$

APPLICATIONS INFORMATION

ERROR AMPLIFIER—DYNAMIC THEORY

Due to the sampling nature of the feedback loop, there are several timing signals and other constraints that are required for proper LT3575 operation.

Minimum Current Limit

The LT3575 obtains output voltage information from the SW pin when the secondary winding conducts current. The sampling circuitry needs a minimum amount of time to sample the output voltage. To guarantee enough time, a minimum inductance value must be maintained. The primary side magnetizing inductance must be chosen above the following value:

$$
\begin{aligned}
& \mathrm{L}_{\text {PRI }} \geq \mathrm{V}_{\text {OUT }} \cdot \frac{\mathrm{t}_{\mathrm{MIN}}}{\mathrm{I}_{\mathrm{MIN}}} \cdot \mathrm{~N}_{\mathrm{PS}}=\mathrm{V}_{\text {OUT }} \cdot \mathrm{N}_{\mathrm{PS}} \cdot\left(\frac{0.88 \mu \mathrm{H}}{\mathrm{~V}}\right) \\
& \mathrm{t}_{\mathrm{MIN}}=\text { minimum off-time } 350 \mathrm{~ns} \\
& I_{\text {MIN }}=\text { minimum current limit, } 400 \mathrm{~mA}
\end{aligned}
$$

The minimum current limit is higher than that on the Electrical Characteristics table due to the overshoot caused by the comparator delay.

Leakage Inductance Blanking

When the output switch first turns off, the flyback pulse appears. However, it takes a finite time until the transformer primary side voltage waveform approximately represents the output voltage. This is partly due to the rise time on the SW node, but more importantly due to the transformer leakage inductance. The latter causes a very fast voltage spike on the primary side of the transformer that is not directly related to output voltage (some time is also required for internal settling of the feedback amplifier circuitry). The leakage inductance spike is largest when the power switch current is highest.
In order to maintain immunity to these phenomena, a fixed delay is introduced between the switch turn-off command and the beginning ofthe sampling. The blanking is internally set to 150 ns . In certain cases, the leakage inductance may not be settled by the end of the blanking period, but will not significantly affect output regulation.

Selecting R $_{\text {FB }}$ and $R_{\text {REF }}$ Resistor Values

The expression for $V_{\text {OUT }}$, developed in the Operation section, can be rearranged to yield the following expression for R_{FB} :

$$
R_{F B}=\frac{R_{\text {REF }} \cdot N_{P S}\left[\left(V_{0 U T}+V_{F}\right) \alpha+V_{T C}\right]}{V_{B G}}
$$

where,

$$
\begin{aligned}
& V_{\text {OUT }}=\text { Output voltage } \\
& V_{F}=\text { Switching diode forward voltage } \\
& \alpha=\text { Ratio of Q1, IC to IE, typically } 0.986 \\
& N_{\text {PS }}=\text { Effective primary-to-secondary turns ratio } \\
& V_{T C}=0.55 \mathrm{~V}
\end{aligned}
$$

The equation assumes the temperature coefficients of the diode and V_{TC} are equal, which is a good first-order approximation.

Strictly speaking, the above equation defines R_{FB} not as an absolute value, but as a ratio of $R_{\text {REF }}$. So, the next question is, "What is the proper value for $R_{\text {REF }}$?" The answer is that $\mathrm{R}_{\text {REF }}$ should be approximately 6.04 k . The LT3575 is trimmed and specified using this value of $R_{\text {REF }}$. If the impedance of $R_{\text {REF }}$ varies considerably from 6.04 k , additional errors will result. However, a variation in R REF of several percent is acceptable. This yields a bit of freedom in selecting standard 1% resistor values to yield nominal $R_{F B} / R_{\text {REF }}$ ratios. The $R_{F B}$ resistor given by this equation should also be verified experimentally, and adjusted if necessary for best output accuracy.
Tables 1-4 are useful for selecting the resistor values for $R_{R E F}$ and $R_{F B}$ with no equations. The tables provide $R_{F B}$, $R_{\text {REF }}$ and $R_{T C}$ values for common output voltages and common winding ratios.

Table 1. Common Resistor Values for 1:1 Transformers

$\mathbf{V}_{\text {OUT }}(\mathbf{V})$	$\mathbf{N}_{\text {PS }}$	$\mathbf{R}_{\text {FB }}(\mathbf{k} \boldsymbol{\Omega})$	$\mathbf{R}_{\text {REF }} \mathbf{(k \boldsymbol { \Omega })}$	$\mathbf{R}_{\mathbf{T C}}(\mathbf{k} \boldsymbol{\Omega})$
3.3	1.00	18.7	6.04	19.1
5	1.00	27.4	6.04	28
12	1.00	64.9	6.04	66.5
15	1.00	80.6	6.04	80.6
20	1.00	107	6.04	105

APPLICATIONS INFORMATION

Table 2. Common Resistor Values for 2:1 Transformers

$\mathbf{V}_{\mathbf{0 U T}}(\mathbf{V})$	$\mathbf{N}_{\mathbf{P S}}$	$\mathbf{R}_{\text {FB }}(\mathbf{k} \boldsymbol{\Omega})$	$\mathbf{R}_{\mathbf{R E F}} \mathbf{(k \boldsymbol { \Omega })}$	$\mathbf{R}_{\mathbf{T C}}(\mathbf{k} \boldsymbol{\Omega})$
3.3	2.00	37.4	6.04	18.7
5	2.00	56	6.04	28
12	2.00	130	6.04	66.5
15	2.00	162	6.04	80.6

Table 3. Common Resistor Values for 3:1 Transformers

$\mathbf{V}_{\text {OUT }}(\mathbf{V})$	$\mathbf{N}_{\text {PS }}$	$\mathbf{R}_{\text {FB }}(\mathbf{k} \boldsymbol{\Omega})$	$\mathbf{R}_{\text {REF }}(\mathbf{k} \boldsymbol{\Omega})$	$\mathbf{R}_{\text {TC }}(\mathbf{k} \boldsymbol{\Omega})$
3.3	3.00	56.2	6.04	20
5	3.00	80.6	6.04	28.7
10	3.00	165	6.04	54.9

Table 4. Common Resistor Values for 4:1 Transformers

$\mathbf{V}_{\text {OUT }}(\mathbf{V})$	$\mathbf{N}_{\text {PS }}$	$\mathbf{R}_{\text {FB }}(\mathbf{k} \boldsymbol{\Omega})$	$\mathbf{R}_{\text {REF }}(\mathbf{k} \boldsymbol{\Omega})$	$\mathrm{R}_{\text {TC }}(\mathbf{k} \boldsymbol{\Omega})$
3.3	4.00	76.8	6.04	19.1
5	4.00	113	6.04	28

Output Power

Aflybackconverter has a complicated relationship between the input and output current compared to a buck or a boost. A boost has a relatively constant maximum input current regardless of input voltage and a buck has a relatively constant maximum output current regardless of input voltage. This is due to the continuous nonswitching behavior of the two currents. A flyback converter has both discontinuous input and output currents which makes it similar to a nonisolated buck-boost. The duty cycle will affect the input and output currents, making it hard to
predict output power. In addition, the winding ratio can be changed to multiply the output current at the expense of a higher switch voltage.

The graphs in Figures $1-3$ show the maximum output power possible for the output voltages $3.3 \mathrm{~V}, 5 \mathrm{~V}$, and 12 V . The maximum power output curve is the calculated output power if the switch voltage is 50 V during the off-time. To achieve this power level at a given input, a winding ratio value must be calculated to stress the switch to 50 V , resulting in some odd ratio values. The curves below are examples of common winding ratio values and the amount of output power at given input voltages.

One design example would be a 5V output converter with a minimum input voltage of 20 V and a maximum input voltage of 30V. A three-to-one winding ratio fits this design example perfectly and outputs close to ten watts at 30 V but lowers to eight watts at 20 V .

TRANSFORMER DESIGN CONSIDERATIONS

Transformer specification and design is perhaps the most critical part of successfully applying the LT3575. In addition to the usual list of caveats dealing with high frequency isolated power supply transformer design, the following information should be carefully considered.

Linear Technology has worked with several leading magnetic component manufacturersto produce pre-designed flyback transformers for use with the LT3575. Table 5 shows the details of several of these transformers.

Figure 1. Output Power for 3.3V Output

Figure 2. Output Power for 5V Output

Figure 3. Output Power for 12V Output

APPLICATIONS INFORMATION

Table 5. Predesigned Transformers-Typical Specifications, Unless Otherwise Noted

TRANSFORMER PART NUMBER	$\begin{gathered} \text { DIMENSION } \\ (\mathrm{W} \times \mathrm{L} \times \mathrm{H})(\mathrm{mm}) \end{gathered}$	$\begin{aligned} & \text { LPRI } \\ & (\mu \mathrm{H}) \end{aligned}$	LLEAKAGE$\text { (} \mathrm{nH} \mathrm{H}$	$\mathrm{N}_{\mathrm{p}}: \mathrm{N}_{\mathrm{S}}$	$\mathrm{RPRI}^{(\mathrm{m}} \mathrm{m}_{\mathrm{s}}$	$\begin{aligned} & \mathrm{R}_{\mathrm{SEC}} \\ & (\mathrm{~m} \Omega) \end{aligned}$	VENDOR	TARGET APPLICATION*	
								$\begin{aligned} & V_{0} \\ & (V) \end{aligned}$	$\begin{aligned} & \mathrm{I}_{0} \\ & (\mathrm{~A}) \end{aligned}$
750311306	$15.24 \times 13.3 \times 11.43$	100	1750	3:1	285	46	Würth Elektronik	12	1
750311307	$15.24 \times 13.3 \times 11.43$	100	2000	2:1	290	104	Würth Elektronik	24	0.5
750311308	$15.24 \times 13.3 \times 11.43$	100	2100	1:1	325	480	Würth Elektronik	24	0.5
750310564	$15.24 \times 13.3 \times 11.43$	63	450	3:1	115	50	Würth Elektronik	± 5	1
750311303	$15.24 \times 13.3 \times 11.43$	50	800	5:1	106	13	Würth Elektronik	5	3
750311304	$15.24 \times 13.3 \times 11.43$	50	800	4:1	146	17	Würth Elektronik	5	3
750311305	$15.24 \times 13.3 \times 11.43$	50	1200	3:1	175	28	Würth Elektronik	12	1
PA2627NL	$15.24 \times 13.3 \times 11.43$	50	766	3:1	420	44	Pulse Engineering	3.3	3
750310471	$15.24 \times 13.3 \times 11.43$	25	350	3:1	57	11	Würth Elektronik	5	2
750310562	$15.24 \times 13.3 \times 11.43$	25	330	2:1	60	20	Würth Elektronik	12	0.8
750310563	$15.24 \times 13.3 \times 11.43$	25	325	1:1	60	60	Würth Elektronik	12	0.8
PA2364NL	$15.24 \times 13.3 \times 11.43$	25	1000	7:1	125	5.6	Pulse Engineering	3.3	1.5
PA2363NL	$15.24 \times 13.3 \times 11.43$	25	850	5:1	117	7.5	Pulse Engineering	5	1
PA2362NL	$15.24 \times 13.3 \times 11.43$	24	550	4:1	117	9.5	Pulse Engineering	3.3	1.5
PA2454NL	$15.24 \times 13.3 \times 11.43$	24	430	3:1	82	11	Pulse Engineering	5	1
PA2455NL	$15.24 \times 13.3 \times 11.43$	25	450	2:1	82	22	Pulse Engineering	12	0.5
PA2456NL	$15.24 \times 13.3 \times 11.43$	25	390	1:1	82	84	Pulse Engineering	12	0.3
750310559	$15.24 \times 13.3 \times 11.43$	24	400	4:1	51	16	Würth Elektronik	3.3	1.5
750311675	$15.24 \times 13.3 \times 11.43$	25	130	3:1	51	11	Würth Elektronik	5	2
750311342	$15.24 \times 13.3 \times 11.43$	15	440	2:1	85	22	Würth Elektronik	5	1.5
750311567	$15.24 \times 13.3 \times 11.43$	8	425	2:1	53	22	Würth Elektronik	5	2
750311422	$17.7 \times 14.0 \times 12.7$	50	574	5:1	80	8	Würth Elektronik	3.3	4
750311423	$17.7 \times 14.0 \times 12.7$	50	570	4:1	90	12	Würth Elektronik	5	2.4
750311457	$17.7 \times 14.0 \times 12.7$	50	600	4:1	115	12	Würth Elektronik	5	2.4
750311688	$17.7 \times 14.0 \times 12.7$	50	600	5:1	80	8	Würth Elektronik	3.3	4
750311689	$17.7 \times 14.0 \times 12.7$	50	600	4:1	115	12	Würth Elektronik	5	2.4
750311439	$17.7 \times 14.0 \times 12.7$	37	750	2:1	89	28	Würth Elektronik	12	1
PA2467NL	$17.7 \times 14.0 \times 12.7$	37	750	2:1	89	28	Pulse Engineering	12	1
PA2466NL	$17.7 \times 14.0 \times 12.7$	37	750	6:1	89	4.6	Pulse Engineering	3.3	4
PA2369NL	$17.7 \times 14.0 \times 12.7$	37	750	5:1	89	6.2	Pulse Engineering	5	2.5
750311458	$17.7 \times 14.0 \times 12.7$	15	175	3:1	35	6	Würth Elektronik	3.3	4
750311625	$17.7 \times 14.0 \times 12.7$	9	350	4:1	43	6	Würth Elektronik	3.3	4
750311564	$17.7 \times 14.0 \times 12.7$	9	120	3:1	36	7	Würth Elektronik	5	2.5
750311624	$17.7 \times 14.0 \times 12.7$	9	180	3:2	34	21	Würth Elektronik	15	1

[^0]
APPLICATIONS InFORMATION

Turns Ratio

Note that when using an $R_{\text {FB }} / R_{\text {REF }}$ resistor ratio to set output voltage, the user has relative freedom in selecting a transformer turns ratio to suit a given application.In contrast, simpler ratios of small integers, e.g., 1:1, 2:1, $3: 2$, etc., can be employed to provide more freedom in setting total turns and mutual inductance.

Typically, the transformer turns ratio is chosen to maximize available output power. Forlow output voltages (3.3 V or 5 V), a N:1 turns ratio can be used with multiple primary windings relative to the secondary to maximize the transformer's current gain (and output power). However, remember that the SW pin sees a voltage that is equal to the maximum input supply voltage plus the output voltage multiplied by the turns ratio. This quantity needs to remain below the ABS MAX rating of the SW pin to prevent breakdown of the internal power switch. Together these conditions place an upper limit on the turns ratio, N, for a given application. Choose a turns ratio low enough to ensure:

$$
N<\frac{50 V-V_{I N(M A X)}}{V_{\text {OUT }}+V_{F}}
$$

For larger $\mathrm{N}: 1$ values, a transformer with a larger physical size is needed to deliver additional current and provide a large enough inductance value to ensure that the off-time is long enough to accurately measure the output voltage.
For lower output powerlevels, a 1:1 or 1:Ntransformercan be chosen for the absolute smallest transformer size. A 1: N transformer will minimize the magnetizing inductance (and minimize size), but will also limit the available output power. A higher 1:N turns ratio makes it possible to have very high output voltages withoutexceeding the breakdown voltage of the internal power switch.

Leakage Inductance

Transformer leakage inductance (on either the primary or secondary) causes a voltage spike to appear at the primary after the output switch turns off. This spike is increasingly prominent at higher load currents where more stored energy must be dissipated. In most cases, a snubber circuit will
be required to avoid overvoltage breakdown at the output switch node. Transformer leakage inductance should be minimized.

An RCD (resistor capacitor diode) clamp, shown in Figure 4, is required for most designs to prevent the leakage inductance spike from exceeding the breakdown voltage of the power device. The flyback waveform is depicted in Figure 5. In most applications, there will be a very fast voltage spike caused by a slow clamp diode that may not exceed 60 V . Once the diode clamps, the leakage inductance current is absorbed by the clamp capacitor. This period should not last longer than 150 ns so as not to interfere with the output regulation, and the voltage during this clamp period must not exceed 55 V . The clamp diode turns off after the leakage inductance energy is absorbed and the switch voltage is then equal to:

$$
V_{S W(M A X)}=V_{\text {IN(MAX) }}+N\left(V_{\text {OUT }}+V_{F}\right)
$$

This voltage must not exceed 50V. This same equation also determines the maximum turns ratio.

When choosing the snubber network diode, careful attention must be paid to maximum voltage seen by the SW pin. Schottky diodes are typically the best choice to be used in the snubber, but some PN diodes can be used if they turn on fast enough to limit the leakage inductance spike. The leakage spike must always be kept below 60V. Figures 6 and 7 show the SW pin waveform for a $24 \mathrm{~V}_{\mathrm{IN}}$, $5 \mathrm{~V}_{\text {OUT }}$ application at a 1 A load current. Notice that the leakage spike is very high (more than 65 V) with the "bad" diode, while the "good" diode effectively limits the spike to less than 55V.

An alternative to RC network is a Zener diode clamping. The Zener diode must be able to handle the voltage rating and power dissipating during the switch turn-off time. Application Note 19 has more details on Zener diode snubber design for flyback converters.
For applications with SW voltage exceeding 50 V , Zener diode clamp mustbe considered. Athigher operating primary current, the leakage inductance spike can potentially exceed the breakdown voltage of the internal power switch.

APPLICATIONS INFORMATION

Figure 4. Snubber Clamping

Figure 6. Good Snubber Diode Limits SW Pin Voltage

Figure 5. Maximum Voltages for SW Pin Flyback Waveform

Figure 7. Bad Snubber Diode Does Not Limit SW Pin Voltage

APPLICATIONS INFORMATION

Secondary Leakage Inductance

In addition to the previously described effects of leakage inductance in general, leakage inductance onthe secondary in particular exhibits an additional phenomenon. It forms an inductive divider on the transformer secondary that effectively reduces the size of the primary-referred flyback pulse used for feedback. This will increase the output voltage target by a similar percentage. Note that unlike leakage spike behavior, this phenomenon is load independent. To the extent that the secondary leakage inductance is a constant percentage of mutual inductance (overmanufacturing variations), this canbeaccommodated by adjusting the $R_{F B} / R_{\text {REF }}$ resistor ratio.

Winding Resistance Effects

Resistance in either the primary or secondary will reduce overall efficiency ($\mathrm{P}_{\text {OUT }} / \mathrm{P}_{\text {IN }}$). Good output voltage regulation will be maintained independent of winding resistance due to the boundary mode operation of the LT3575.

Bifilar Winding

A bifilar, or similar winding technique, is a good way to minimize troublesome leakage inductances. However, rememberthat this will also increase primary-to-secondary capacitance and limit the primary-to-secondary breakdown voltage, so, bifilar winding is not always practical. The Linear Technology applications group is available and extremely qualified to assist in the selection and/or design of the transformer.

Setting the Current Limit Resistor

The maximum current limit can be set by placing a resistor between the $\mathrm{R}_{\text {ILIM }}$ pin and ground. This provides some flexibility in picking standard off-the-shelftransformers that may be rated for less current than the LT3575's internal power switch current limit. If the maximum current limit is needed, use a 10k resistor. For lower current limits, the following equation sets the approximate current limit:

$$
R_{\text {ILIM }}=65 \cdot 10^{3}\left(3.5 \mathrm{~A}-\mathrm{I}_{\text {LIM }}\right)+10 \mathrm{k}
$$

The Switch Current Limit vs RILIM plot in the Typical Performance Characteristics section depicts a more accurate current limit.

Undervoltage Lockout (UVLO)

The $\overline{\text { SHDN/UVLO }}$ pin is connected to a resistive voltage divider connected to $\mathrm{V}_{\text {IN }}$ as shown in Figure 8. The voltage threshold on the SHDN/UVLO pin for $\mathrm{V}_{\text {IN }}$ rising is 1.22 V . To introduce hysteresis, the LT3575 draws $2.8 \mu \mathrm{~A}$ from the $\overline{\mathrm{SHDN}} / \mathrm{UVLO}$ pin when the pin is below 1.22 V . The hysteresis is therefore user-adjustable and depends on the value of R1. The UVLO threshold for $V_{\text {IN }}$ rising is:

$$
\mathrm{V}_{\mathrm{IN}(\mathrm{UVLO}, \mathrm{RISING})}=\frac{1.22 \mathrm{~V} \cdot(\mathrm{R} 1+\mathrm{R} 2)}{\mathrm{R} 2}+2.8 \mu \mathrm{~A} \cdot \mathrm{R} 1
$$

The UVLO threshold for $\mathrm{V}_{\text {IN }}$ falling is:

$$
\mathrm{V}_{\text {IN(UVLO,FALLING) }}=\frac{1.22 \mathrm{~V} \cdot(\mathrm{R} 1+\mathrm{R} 2)}{\mathrm{R} 2}
$$

To implement external run/stop control, connect a small NMOS to the UVLO pin, as shown in Figure 8. Turning the NMOS on grounds the UVLO pin and prevents the LT3575 from operating, and the part will draw less than a $1 \mu \mathrm{~A}$ of quiescent current.

Figure 8. Undervoltage Lockout (UVLO)

APPLICATIONS INFORMATION

Minimum Load Requirement

The LT3575 obtains output voltage information through the transformer while the secondary winding is conducting current. During this time, the output voltage (multiplied times the turns ratio) is presented to the primary side of the transformer. The LT3575 uses this reflected signal to regulate the output voltage. This means that the LT3575 must turn on every so often to sample the output voltage, which delivers a small amount of energy to the output. This sampling places a minimum load requirement on the output of 1% to 2% of the maximum load.

A Zener diode with a Zener breakdown of 20\% higher than the output voltage can serve as a minimum load if pre-loading is not acceptable. For a 5 V output, use a 6 V Zener with cathode connected to the output.

BIAS Pin Considerations

For applications with an input voltage less than 15 V , the BIAS pin is typically connected directly to the $\mathrm{V}_{\text {IN }}$ pin. For input voltages greater than 15 V , it is preferred to leave the BIAS pin separate from the $\mathrm{V}_{\text {IN }}$ pin. In this condition, the BIAS pin is regulated with an internal LDO to a voltage of 3 V . By keeping the BIAS pin separate from the input voltage at high input voltages, the physical size of the capacitors can be minimized (the BIAS pin can then use a 6.3 V or 10V rated capacitor).

Overdriving the BIAS Pin with a Third Winding

The LT3575 provides excellent output voltage regulation without the need for an optocoupler, or third winding, but for some applications with higher input voltages (>20V), it may be desirable to add an additional winding (often called a third winding) to improve the system efficiency. For proper operation of the LT3575, if a winding is used as a supply for the BIAS pin, ensure that the BIAS pin voltage is at least 3.15 V and always less than the input voltage. For a typical $24 \mathrm{~V}_{\text {IN }}$ application, overdriving the BIAS pin will improve the efficiency gain $4-5 \%$.

Loop Compensation

The LT3575 is compensated using an external resistorcapacitor network on the V_{C} pin. Typical values are in the range of $R_{C}=50 \mathrm{k}$ and $\mathrm{C}_{\mathrm{C}}=1.5 \mathrm{nF}$ (see the numerous
schematics in the Typical Applications section for other possible values). If too large of an R_{C} value is used, the part will be more susceptible to high frequency noise and jitter. If too small of an R_{C} value is used, the transient performance will suffer. The value choice for C_{C} is somewhat the inverse of the R_{C} choice: if too small a C_{C} value is used, the loop may be unstable, and if too large a C_{C} value is used, the transient performance will also suffer. Transient response plays an important role for any DC/DC converter.

Design Example

The following example illustrates the converter design process using LT3575.
Given the input voltage of 20 V to 28 V , the required output is $5 \mathrm{~V}, 1 \mathrm{~A}$.
$V_{\text {IN(MIN) }}=20 \mathrm{~V}, \mathrm{~V}_{\text {IN(MAX) }}=28 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{F}}=0.5 \mathrm{~V}$
and $\mathrm{I}_{\text {OUT }}=1 \mathrm{~A}$

1. Select the transformer turns ratio to accommodate the output.

The output voltage is reflected to the primary side by a factor of turns ratio N . The switch voltage stress $\mathrm{V}_{\text {SW }}$ is expressed as:

$$
\begin{aligned}
& N=\frac{N_{P}}{N_{S}} \\
& V_{S W(M A X)}=V_{I N}+N\left(V_{O U T}+V_{F}\right)<50 V
\end{aligned}
$$

Or rearranged to:

$$
N<\frac{50-V_{\text {IN(MAX })}}{\left(V_{\text {OUT }}+V_{F}\right)}
$$

On the other hand, the primary side current is multiplied by the same factor of N . The converter output capability is:

$$
\begin{aligned}
& \mathrm{I}_{\text {OUT(MAX })}=0.8 \cdot(1-D) \cdot \frac{1}{2} \mathrm{NI}_{\mathrm{PK}} \\
& \mathrm{D}=\frac{\mathrm{N}\left(\mathrm{~V}_{\text {OUT }}+\mathrm{V}_{F}\right)}{V_{\text {IN }}+N\left(V_{\text {OUT }}+V_{F}\right)}
\end{aligned}
$$

APPLICATIONS InFORMATION

The transformer turns ratio is selected such that the converter has adequate current capability and a switch stress below 50V. Table 6 shows the switch voltage stress and output current capability at different transformer turns ratio.

Table 6. Switch Voltage Stress and Output Current Capability vs Turns-Ratio

N	$\begin{aligned} & V_{\text {SW(MAX) }} \text { AT } V_{\text {IN(MAX) }} \end{aligned}$	$\mathrm{I}_{\text {OUT(MAX) }} \text { AT } \mathrm{V}_{\text {IN(MIN) }}$ (A)	DUTY CYCLE (\%)
1:1	33.5	1.26	16~22
2:1	39	2.07	28~35
3:1	44.5	2.63	37~45
4:1	50	3.05	44~52

BIAS winding turns ratio is selected to program the BIAS voltage to $3 \mathrm{~V} \sim 5 \mathrm{~V}$. The BIAS voltage shall not exceed the input voltage.
The turns ratio is then selected as primary: secondary: BIAS = 3:1:1.

2. Select the transformer primary inductance for target switching frequency.

The LT3575 requires a minimum amount of time to sample the output voltage during the off-time. This off-time, $t_{0 F F(M I N)}$, shall be greater than 350ns over all operating conditions. The converter also has a minimum currentlimit, $I_{\text {MIN }}$, of 400 mA to help create this off-time. This defines the minimum required inductance as defined as:

$$
\mathrm{L}_{\text {MIN }}=\frac{\mathrm{N}\left(\mathrm{~V}_{\text {OUT }}+\mathrm{V}_{F}\right)}{\mathrm{I}_{\text {MIN }}} \cdot \mathrm{t}_{\text {OFF(MIN })}
$$

The transformer primary inductance also affects the switching frequency which is related to the output ripple. If above the minimum inductance, the transformer's primary inductance may be selected for atarget switching frequency range in order to minimize the output ripple.

The following equation estimates the switching frequency.

$$
\mathrm{f}_{\mathrm{SW}}=\frac{1}{\mathrm{t}_{\text {ON }}+\mathrm{t}_{\text {OFF }}}=\frac{1}{\frac{I_{\text {PK }}}{V_{\text {IN }} / L}+\frac{I_{\text {PK }}}{N_{\text {PS }}\left(V_{\text {OUT }}+V_{F}\right) / L}}
$$

Table 7.Switching Frequency at Different Primary Inductance at I_{PK}

L ($\mu \mathrm{H}$)	$\mathrm{f}_{\mathrm{SW}} \mathrm{AT}_{(\mathrm{kHz})}^{\mathrm{V}_{\text {IN(MIN })}}$	$\mathrm{f}_{\text {SW }} \text { AT } \mathrm{V}_{(\mathrm{kHz})}$
15	174	205
30	87	103
60	44	51

Note: The switching frequency is calculated at maximum output.
Inthis design example, the minimum primary inductance is used to achieve a nominal switching frequency of 200 kHz at full load. The 750311458 from Würth Elektronik is chosen as the flyback transformer.

Given the turns ratio and primary inductance, a customized transformer can be designed by magnetic component manufacturer or a multi-winding transformer such as a Coiltronics Versa-Pac may be used.

3. Select the output diodes and output capacitor.

The output diode voltage stress V_{D} is the summation of the output voltage and reflection of input voltage to the secondary side. The average diode current is the load current.

$$
V_{D}=V_{\text {OUT }}+\frac{V_{I N}}{N}
$$

The output capacitor should be chosen to minimize the output voltage ripple while considering the increase in size and cost of a larger capacitor. The following equation calculates the output voltage ripple.

$$
\Delta \mathrm{V}_{\mathrm{MAX}}=\frac{\mathrm{LI}^{2} \mathrm{PK}}{2 \mathrm{CV}_{\mathrm{OUT}}}
$$

4. Select the snubber circuit to clamp the switch voltage spike.

A flyback converter generates a voltage spike during switch turn-off due to the leakage inductance of the transformer. In order to clamp the voltage spike below the maximum rating of the switch, a snubber circuit is used. There are manytypes of snubber circuits, for example R-C, R-C-D and

APPLICATIONS INFORMATION

Zener clamps. Among them, RCD is widely used. Figure 9 shows the RCD snubber in a flyback converter.
A typical switch node waveform is shown in Figure 10.
During switch turn-off, the energy stored in the leakage inductance is transferred to the snubber capacitor, and eventually dissipated in the snubber resistor.

$$
\left.\frac{1}{2} L_{S}\right|^{2}{ }_{P K} f_{S W}=\frac{V_{C}\left(V_{C}-N \cdot V_{O U T}\right)}{R}
$$

The snubber resistor affects the spike amplitude V_{C} and duration t_{SP}, the snubber resistor is adjusted such that $t_{S P}$ is about 150 ns . Prolonged $t_{\text {SP }}$ may cause distortion to the output voltage sensing.

The previous steps finish the flyback power stage design.

5. Select the feedback resistor for proper output voltage.

Using the resistor Tables 1-4, select the feedback resistor R_{FB}, and program the output voltage to 5 V . Adjust the

Figure 9. RCD Snubber in a Flyback Converter
$R_{\text {TC }}$ resistor for temperature compensation of the output voltage. $R_{\text {REF }}$ is selected as 6.04 k .
A small capacitor in parallel with $R_{\text {REF }}$ filters out the noise during the voltage spike, however, the capacitor should limit to 10pF. A large capacitor causes distortion on voltage sensing.

6. Optimize the compensation network to improve the transient performance.

The transient performance is optimized by adjusting the compensation network. For best ripple performance, select a compensation capacitor not less than 1.5 nF , and select a compensation resistor not greater than 50k.

7. Current limit resistor, soft-start capacitor and UVLO resistor divider

Use the current limit resistor $\mathrm{R}_{\mathrm{LIM}}$ to lower the current limit if a compact transformerdesign is required. Soft-start capacitor helps during the start-up of the flyback converter . Select the UVLO resistor divider for intended input operation range. These equations are aforementioned.

Figure 10. Typical Switch Node Waveform

TYPICAL APPLICATIONS

Low Input Voltage 5V Isolated Flyback Converter

$\pm 12 \mathrm{~V}$ Isolated Flyback Converter

TYPICAL APPLICATIONS

5V Isolated Flyback Converter

Efficiency

TYPICAL APPLICATIONS

3.3V Isolated Flyback Converter

TYPICAL APPLICATIONS

12V Isolated Flyback Converter

LT3575

TYPICAL APPLICATIONS

Four Output 12V Isolated Flyback Converter

FE Package

16-Lead Plastic TSSOP (4.4mm)
(Reference LTC DWG \# 05-08-1663)
Exposed Pad Variation BA

LT3575

TYPICAL APPLICATION

13 V to $30 \mathrm{~V}_{\text {IN }},+5 \mathrm{~V} /-5 \mathrm{~V}_{\text {OUT }}$ Isolated Flyback Converter

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT3574/LT3573	40V Isolated Flyback Converters	Monolithic No-Opto Flybacks with Integrated 0.65A / 1.25A 60V Switch
LT3957/LT3958	40V/100V Flyback, Boost Converters	Monolithic with Integrated 5A/3.3A Switch
LT3757/LT3758	40V/100V Flyback, Boost Controllers	Universal Controllers with Small Package and Powerful Gate Drive
LT1737/LT1725	20V Isolated Flyback Controller	No Opto-Isolator or Third Winding Required
LT3825/LT3837	Isolated Synchronous Flyback Controllers	No Opto-Isolator or Third Winding Required
LTC $3803 / L T C 3803-3 ~$	200kHz/300kHz Flyback DC/DC Controllers	$V_{\text {IN }}$ and Vout Limited Only by External Components
LTC3803-5	LTC3805/LTC3805-5	Adjustable Frequency Flyback Controllers

[^0]: *Target applications, not guaranteed

