

MM54C89/MM74C89 64-Bit TRI-STATE® Random Access Read/Write Memory

General Description

The MM54C89/MM74C89 is a 16-word by 4-bit random access read/write memory. Inputs to the memory consist of four address lines, four data input lines, a write enable line and a memory enable line. The four binary address inputs are decoded internally to select each of the 16 possible word locations. An internal address register latches the address information on the positive to negative transition of the memory enable input. The four TRI-STATE data output lines working in conjunction with the memory enable input provide for easy memory expansion.

Address Operation: Address inputs must be stable t_{SA} prior to the positive to negative transition of memory enable. It is thus not necessary to hold address information stable for more than t_{HA} after the memory is enabled (positive to negative transition of memory enable).

Note: The timing is different than the DM7489 in that a positive to negative transition of the memory enable must occur for the memory to be selected.

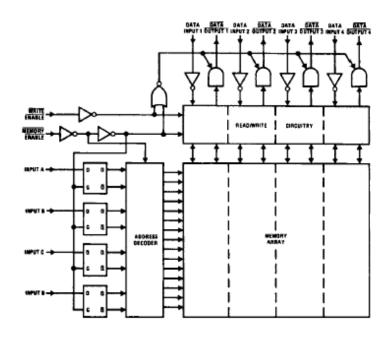
Write Operation: Information present at the data inputs is written into the memory at the selected address by bringing write enable and memory enable low.

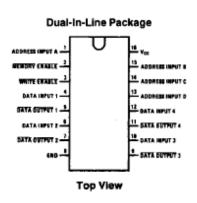
Read Operation: The complement of the information which was written into the memory is non-destructively read out at the four outputs. This is accomplished by selecting the desired address and bringing memory enable low and write enable bigh.

When the device is writing or disabled the output assumes a TRI-STATE (Hi-z) condition.

Features

■ Wide supply voltage range
Guaranteed noise margin


High noise immunity


Low power
TTL compatibility
Low power consumption
Fast access time

3.0V to 15V
0.45 V_{CC} (typ.)
fan out of 2
driving 74L
100 nW/package (typ.)

TRI-STATE output

Logic and Connection Diagrams

For complete Rochester ordering guide, please refer to page 2 Please consult factory for specific package availability

Rochester Electronics guarantees performance of its semiconductor products to the original OEM specifications. "Typical" values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing. Rochester Electronics reserves the right to make changes without further notice to any specification herein.

54/74C89

Rochester Ordering Guide

Rochester Part Number	National Semiconductor Part Number	Package	Temperature
MM54C89J	MM54C89J	CDIP-16	-55° to +125°C
MM54C89J/B	MM54C89J/883	CDIP-16	-55° to +125°C
MM54C89W	MM54C89W	SOP-16, Ceramic	-55° to +125°C
MM54C89W/B	MM54C89W/883	SOP-16, Ceramic	-55° to +125°C
MM54C89D	MM54C89D	CDIP-16	-55° to +125°C
MM54C89D/B	MM54C89D/883	CDIP-16	-55° to +125°C
MM54C89F	MM54C89F	FP-16, Ceramic	-55° to +125°C
MM74C89J	MM74C89J	CDIP-16	-40° to +85°C
MM74C89N	MM74C89N	PDIP-16	-40° to +85°C

Absolute Maximum Ratings (Note 1)

Voltage at any Pin −0.3V to V_{CC} +0.3V

Operating Temperature Range

MM54C89 -55°C to + 125°C MM74C89 -40°C to +85°C

Storage Temperature Range (T_S) -65°C to +150°C

Power Dissipation (PD)

 Dual-In-Line
 700 mW

 Small Outline
 500 mW

 Operating V_{CC} Range
 3.0V to 15V

Absolute Maximum V_{CC} Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

18V

DC Electrical Characteristics Min/Max limits apply across temperature range, unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	CMOS					
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 5.0V V _{CC} = 10V	3.5 8.0			V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 5.0V V _{CC} = 10V			1.5 2.0	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0V$, $I_{O} = -10 \mu A$ $V_{CC} = 10V$, $I_{O} = -10 \mu A$	4.5 9.0			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5.0V$, $I_{O} = +10 \mu A$ $V_{CC} = 10V$, $I_{O} = +10 \mu A$			0.5 1.0	V
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		-0.005	1.0	μА
I _{IN(0)}	Logical "0" Input Current	V _{CC} = 15V, V _{IN} = 0V	-1.0	-0.005		μА
loz	Output Current in High Impedance State	V _{CC} = 15V, V = 15V V _{CC} = 15V, V _O = 0V	-1.0	0.005 -0.005	1.0	μA μA
lcc	Supply Current	V _{CC} = 15V		0.05	300	μА
CMOS/LP	TTL INTERFACE					
V _{IN(1)}	Logical "1" Input Voltage	54C, V _{CC} = 4.5V 74C, V _{CC} = 4.75V	V _{CC} - 1.5 V _{CC} - 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	54C, V _{CC} = 4.5V 74C, V _{CC} = 4.75V			0.8 0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	54C, V _{CC} = 4.5V, I _O = -360 μA 74C, V _{CC} = 4.75V, I _O = -360 μA	2.4 2.4			V
V _{OUT(0)}	Logical "0" Output Voltage	54C, V _{CC} = 4.5V, I _O = +360 μA 74C, V _{CC} = 4.75V, I _O = +360 μA			0.4 0.4	V
OUTPUT D	PRIVE (See 54C/74C Family Ch	aracteristics Data Sheet) (Short Circu	it Current)			
SOURCE	Output Source Current (P-Channel)	V _{CC} = 5.0V, V _{OUT} = 0V T _A = 25°C	-1.75	-3.3		mA
SOURCE	Output Source Current (P-Channel)	V _{CC} = 10V, V _{OUT} = 0V T _A = 25°C	-8.0	-15		mA
ISINK	Output Sink Current (N-Channel)	V _{CC} = 5.0V, V _{OUT} = V _{CC} T _A = 25°C	1.75	3.6		mA
Isink	Output Sink Current (N-Channel)	V _{CC} = 10V, V _{OUT} = V _{CC} T _A = 25°C	8.0	16		mA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

AC Electrical Characteristics* TA = 25°C, CL = 50 pF, unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
t _{pd}	Propagation Delay from Memory Enable	V _{CC} = 5V V _{CC} = 10V		270 100		ns ns	
tacc	Access Time from Address Input	V _{CC} = 5V V _{CC} = 10V		350 130	650 280	ns ns	
tsa .	Address Setup Time	V _{CC} = 5V V _{CC} = 10V	150 60			ns ns	
tha .	Address Hold Time	V _{CC} = 5V V _{CC} = 10V	60 40			ns ns	
t _{ME}	Memory Enable Pulse Width	V _{CC} = 5V V _{CC} = 10V	400 150	250 90		ns ns	

AC Electrical Characteristics * T_A = 25°C, C_L = 50 pF, unless otherwise noted (Continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
t _{SR}	Write Enable Setup Time for a Read	V _{CC} = 5V V _{CC} = 10V	0			ns ns	
tws	Write Enable Setup Time for a Write	V _{CC} = 5V V _{CC} = 10V			t _{ME}	ns ns	
twe	Write Enable Pulse Width	V _{CC} = 5V, t _{WS} = 0 V _{CC} = 10V, t _{WS} = 0	300 100	160 60		ns ns	
tHD	Data Input Hold Time	V _{CC} = 5V V _{CC} = 10V	50 25			ns ns	
t _{SD}	Data Input Setup	V _{CC} = 5V V _{CC} = 10V	50 25			ns ns	
t _{1H} , t _{0H}	Propagation Delay from a Logical "1" or Logical "0" to the High Impedance State from Memory Enable	V _{CC} = 5V, C _L = 5 pF, R _L = 10k V _{CC} = 10V, C _L = 5 pF, R _L = 10k		180 -85	300 120	ns ns	
t _{1H} , t _{OH}	Propagation Delay from a Logical "1" or Logical "0" to the High Impedance State from Write Enable	V _{CC} = 50V, C _L = 5 pF, R _L = 10k V _{CC} = 10V, C _L = 5 pF, R _L = 10k		180 85	300 120	ns ns	
CIN	Input Capacity	Any Input (Note 2)		5		pF	
Соит	Output Capacity	Any Output (Note 2)		6.5		pF	
C _{PD}	Power Dissipation Capacity	(Note 3) 230				pF	

^{*}AC Parameters are guaranteed by DC correlated testing.

Note 3: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.

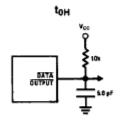
AC Electrical Characteristics* Guaranteed across the specified temperature range, C_L = 50 pF

Parameter	Conditions	MM54C89 T _A = -55°C to + 125°C		MM74C89 T _A = -40°C to +85°C		Units
		Min	Max	Min	Max	7
t _{PD}	V _{CC} = 5V		700		600	ns
	V _{CC} = 10V		310		265	ns
	V _{CC} = 15V		250		210	ns
tACC	V _{CC} = 5V		910		780	ns
	V _{CC} = 10V		400		345	ns
	V _{CC} = 15V		320		270	ns
tsa	V _{CC} = 5V	210		180		ns
	$V_{CC} = 10V$	90		80		ns
	$V_{CC} = 15V$	70		60		ns
t _{HA}	V _{CC} = 5V	80		70		ns
	V _{CC} = 10V	55		50		ns
	V _{CC} = 15V	45		40		ns
t _{ME}	V _{CC} = 5V	560		480		ns
	V _{CC} = 10V	210		180		ns
	V _{CC} = 15V	170		150		ns
twe	V _{CC} = 5V	420		360		ns
	V _{CC} = 10V	140		120		ns
	V _{CC} = 15V	110		100		ns
t _{HD}	V _{CC} = 5V	70		60		ns
	V _{CC} = 10V	35		30		ns
	V _{CC} = 15V	30		25		ns

^{*}AC Parameters are guaranteed by DC correlated testing.

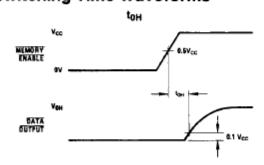
Note 2: Capacitance is guaranteed by periodic testing.

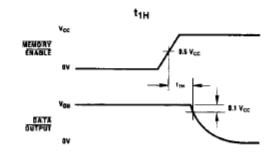
AC Electrical Characteristics* Guaranteed across the specified temperature range, $C_L = 50 \ pF$ (Continued)

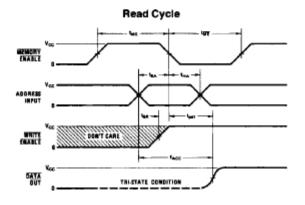

Parameter	Conditions	MM54C89 T _A = -55°C to + 125°C		MM74C89 T _A = -40°C to +85°C		Units
		Min	Max	Min	Max	1
t _{SD}	V _{CC} = 5V V _{CC} = 10V V _{CC} = 15V	70 35 30		60 30 25		ns ns ns
t _{1Н} , t _{0Н}	$V_{CC} = 5V$ $V_{CC} = 10V, C_L = 5 pF$ $V_{CC} = 15V, R_L = 10 k\Omega$		420 170 135		360 145 115	ns ns ns

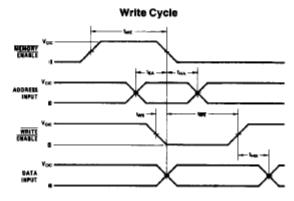
^{*}AC Parameters are guaranteed by DC correlated testing.

Truth Table

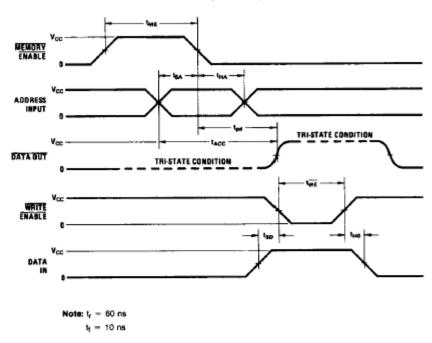

ME	WE	Operation	Condition of Outputs
L	L	Write	TRI-STATE
L	н	Read	Complement of Selected Word
н	L	Inhibit, Storage	TRI-STATE
. н	Н	Inhibit, Storage	TRI-STATE


AC Test Circuits





Switching Time Waveforms



Switching Time Waveforms (Continued)

Read Modify Write Cycle

Rochester Electronics guarantees performance of its semiconductor products to the original OEM specifications. "Typical" values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing. Rochester Electronics reserves the right to make changes without further notice to any specification herein.