

FAN7371 High-Current High-Side Gate Drive IC

Features

- Floating Channel for Bootstrap Operation to +600V
- 4A/4A Sourcing/Sinking Current Driving Capability
- Common-Mode dv/dt Noise Canceling Circuit
- 3.3V and 5V Input Logic Compatible
- Output In-phase with Input Signal
- Under- Voltage Lockout for V_{BS}
- 25V Shunt Regulator on V_{DD} and V_{BS}
- 8-Lead Small Outline Package (SOP)

Applications

- High-Speed Gate Driver
- Sustaine Switch Driver in PDP Application
- Energy-Recovery Circuit Switch Driver in PDP Application
- High-Power Buck Converter
- Motor Drive Inverter

Description

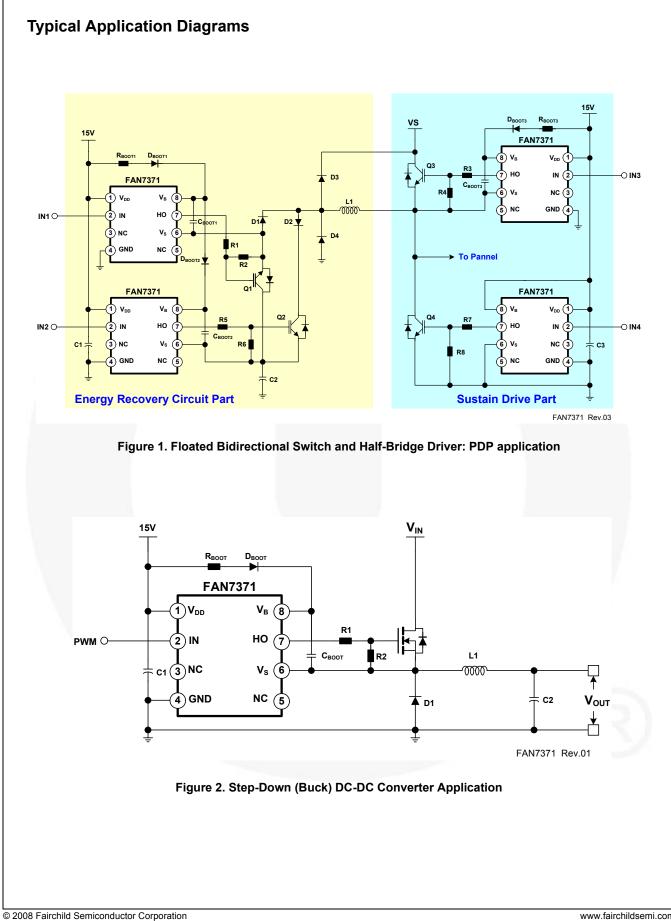
The FAN7371 is a monolithic high-side gate drive IC, which can drive high-speed MOSFETs and IGBTs that operate up to +600V. It has a buffered output stage with all NMOS transistors designed for high pulse current driving capability and minimum cross-conduction.

Fairchild's high-voltage process and common-mode noise canceling techniques provide stable operation of the high-side driver under high dv/dt noise circumstances. An advanced level-shift circuit offers high-side gate driver operation up to V_S=-9.8V (typical) for V_{BS}=15V.

The UVLO circuit prevents malfunction when $\rm V_{BS}$ is lower than the specified threshold voltage.

The high-current and low-output voltage drop feature makes this device suitable for sustaine switch driver and energy recovery switch driver in the Plasma Display Panel application, motor drive inverter, switching power supply, and high-power DC-DC converter applications.

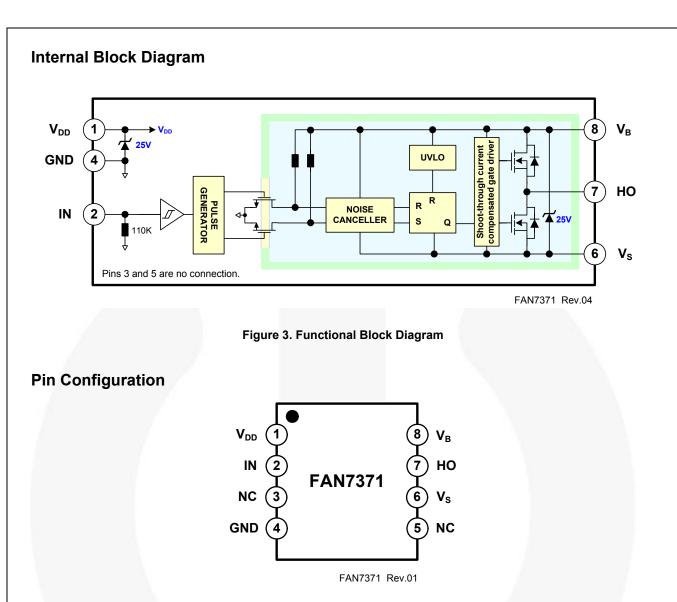
8-SOP


Ordering Information

Part Number	Package	Operating Temperature Range	Eco Status	Packing Method
FAN7371M ⁽¹⁾	8-SOP	-40°C ~ 125°C	RoHS	Tube
FAN7371MX ⁽¹⁾	0-30F		RUHS	Tape & Reel

Note:

1. These devices passed wave soldering test by JESD22A-111.


Por Fairchild's definition of Eco Status, please visit: <u>http://www.fairchildsemi.com/company/green/rohs_green.html</u>.

FAN7371 — High-Current High-Side Gate Drive IC

2

FAN7371 Rev. 1.0.2

Pin Definitions

Pin #	Name	Description
1	V _{DD}	Supply Voltage
2	IN	Logic Input for High-Side Gate Driver Output
3	NC	No Connection
4	GND	Ground
5	NC	No Connection
6	V _S	High-Voltage Floating Supply Return
7	НО	High-Side Driver Output
8	V _B	High-Side Floating Supply

FAN7371 — High-Current High-Side Gate Drive IC

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A=25^{\circ}C$ unless otherwise specified.

Symbol	Characteristics	Min.	Max.	Unit
V _S	High-Side Floating Offset Voltage	V _B -V _{SHUNT}	V _B +0.3	V
V _B	High-Side Floating Supply Voltage ⁽²⁾	-0.3	625.0	V
V _{HO}	High-Side Floating Output Voltage	V _S -0.3	V _B +0.3	V
V _{DD}	Low-Side and Logic Supply Voltage ⁽²⁾	-0.3	V _{SHUNT}	V
V _{IN}	Logic Input Voltage	-0.3	V _{DD} +0.3	V
dV _S /dt	Allowable Offset Voltage Slew Rate		± 50	V/ns
PD	Power Dissipation ^(3, 4, 5)		0.625	W
θ_{JA}	Thermal Resistance		200	°C/W
Т _Ј	Junction Temperature	-55	+150	°C
T _{STG}	Storage Temperature	-55	+150	°C
T _A	Operating Ambient Temperature	-40	+125	°C

Notes:

- 2 This IC contains a shunt regulator on V_{DD} and V_{BS} with a normal breakdown voltage of 25V. Please note that this supply pin should not be driven by a low-impedance voltage source greater than the V_{SHUNT} specified in the Electrical Characteristics section
- 3 Mounted on 76.2 x 114.3 x 1.6mm PCB (FR-4 glass epoxy material).
- 4 Refer to the following standards: JESD51-2: Integral circuits thermal test method environmental conditions, natural convection, and JESD51-3: Low effective thermal conductivity test board for leaded surface mount packages.
- 5 Do not exceed power dissipation (P_D) under any circumstances.

Recommended Operating Conditions

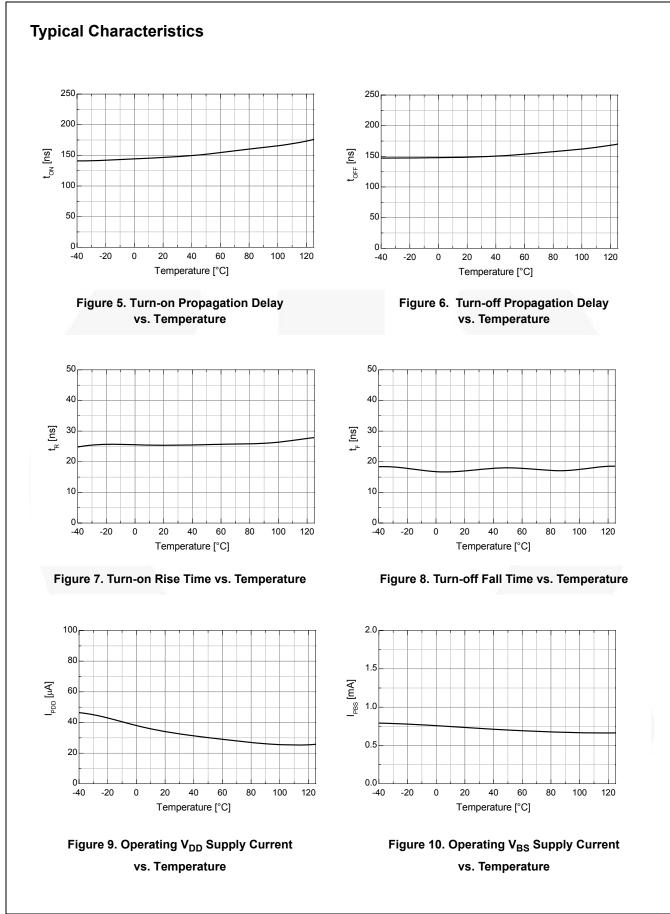
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

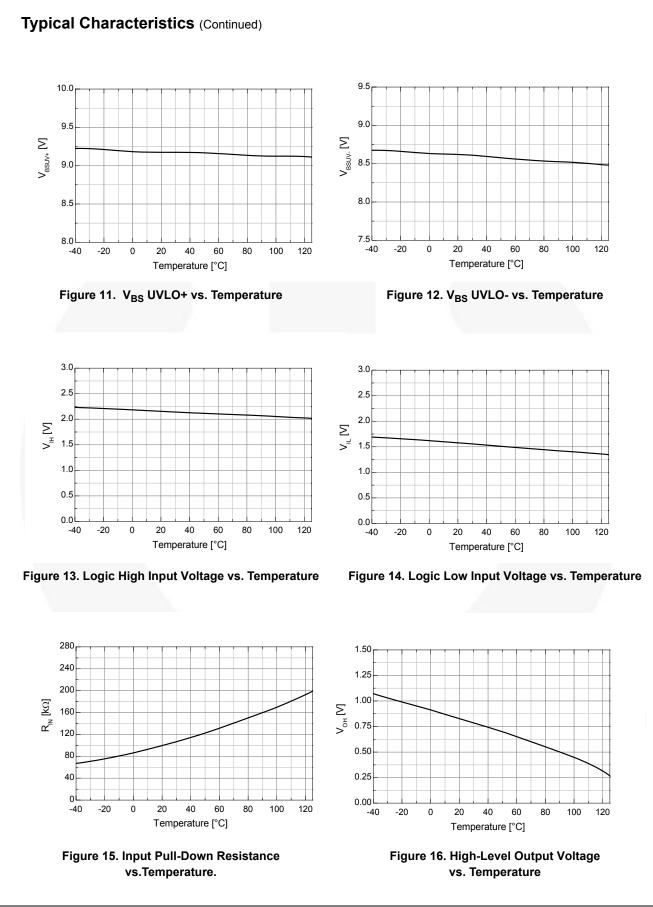
Symbol	Parameter	Min.	Max.	Unit
V _{BS}	High-Side Floating Supply Voltage	V _S +10	V _S +20	V
VS	High-Side Floating Supply Offset Voltage	6-V _{DD}	600	V
V _{HO}	High-Side Output Voltage	V _S	V _B	V
V _{IN}	Logic Input Voltage	GND	V _{DD}	V
V _{DD}	Supply Voltage	10	20	V

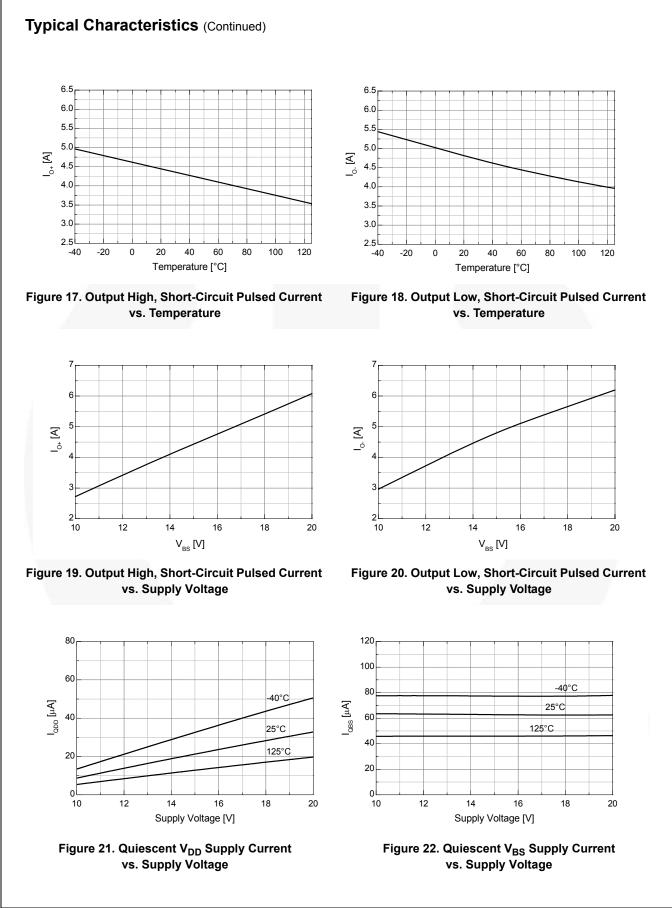
Electrical Characteristics

 $V_{BIAS}(V_{DD}, V_{BS})$ =15.0V, T_A = 25°C, unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to GND. The V_O and I_O parameters are relative to V_S and are applicable to the respective output HO.

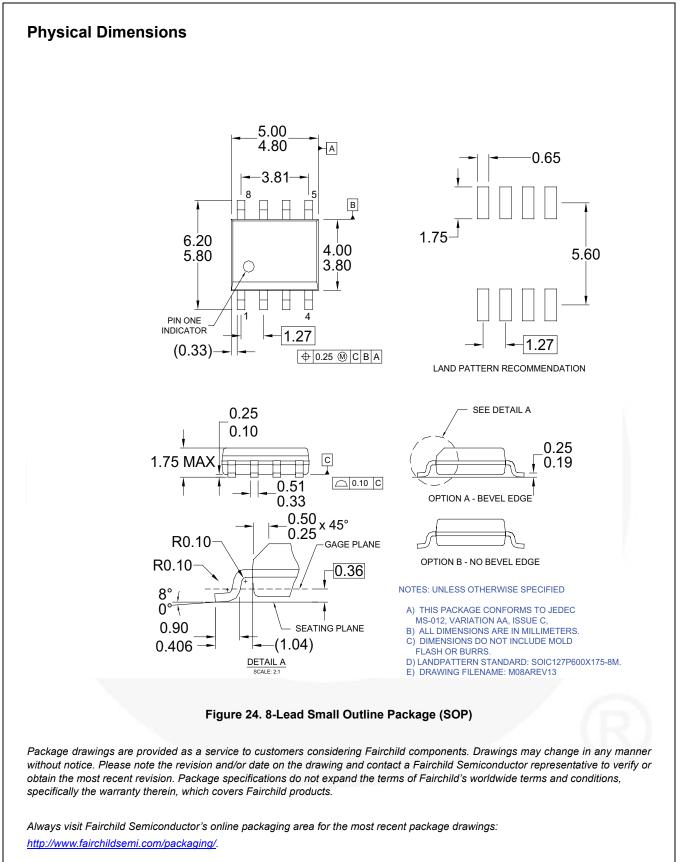
Symbol	Characteristics	Test Condition	Min.	Тур.	Max.	Unit
POWER S	SUPPLY SECTION	1				L
I _{QDD}	Quiescent V _{DD} Supply Current	V _{IN} =0V or 5V		25	70	μΑ
I _{PDD}	Operating V _{DD} Supply Current	f _{IN} =20KHz, No Load		35	100	μA
BOOTST	RAPPED SUPPLY SECTION					
V_{BSUV^+}	V _{BS} Supply Under-Voltage Positive Going Threshold Voltage	V _{BS} =Sweep	8.2	9.2	10.2	V
V _{BSUV-}	V _{BS} Supply Under-Voltage Negative Going Threshold Voltage	V _{BS} =Sweep	7.5	8.5	9.5	V
V _{BSHYS}	V _{BS} Supply Under-Voltage Lockout Hysteresis Voltage	V _{BS} =Sweep		0.7		V
I _{LK}	Offset Supply Leakage Current	V _B =V _S =600V			10	μΑ
I _{QBS}	Quiescent V _{BS} Supply Current	V _{IN} =0V or 5V		60	120	μΑ
I _{PBS}	Operating V _{BS} Supply Current	C _{LOAD} =1nF, f _{IN} =20KHz, rms Value		1.0	2.8	mA
SHUNT R	EGULATOR SECTION					
V _{SHUNT}	V _{DD} and V _{BS} Shunt Regulator Clamping Voltage	I _{SHUNT} =5mA	24	25		V
INPUT LO	DGIC SECTION					
V _{IH}	Logic "1" Input Voltage		2.5			V
V _{IL}	Logic "0" Input Voltage				0.8	V
I _{IN+}	Logic Input High Bias Current	V _{IN} =5V		45	70	μA
I _{IN-}	Logic Input Low Bias Current	V _{IN} =0V			2	μA
R _{IN}	Input Pull-down Resistance		70	110		KΩ
	IVER OUTPUT SECTION		1			
V _{OH}	High Level Output Voltage (V _{BIAS} - V _O)	No Load			1.2	V
V _{OL}	Low Level Output Voltage	No Load			30	mV
I _{O+}	Output High, Short-Circuit Pulsed Current ⁽⁶⁾	V _{HO} =0V, V _{IN} =5V, PW ≤10µs	3.0	4.0		Α
I _{O-}	Output Low, Short-Circuit Pulsed Current ⁽⁶⁾	V _{HO} =15V,V _{IN} =0V, PW ≤10µs	3.0	4.0		Α
Vs	Allowable Negative V _S pin Voltage for IN Signal Propagation to HO			-9.8	-7.0	V


Note:


6 These parameters guaranteed by design.


Dynamic Electrical Characteristics

 $V_{DD}=V_{BS}=15V$, GND=0V, C_{LOAD}=1000pF, T_A=25°C, unless otherwise specified.


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
t _{on}	Turn-on Propagation Delay Time	V _S =0V		150	210	ns
t _{off}	Turn-off Propagation Delay Time	V _S =0V		150	210	ns
t _r	Turn-on Rise Time			25	50	ns
t _f	Turn-off Fall Time			15	40	ns

Switching Time Definitions Timing Diagram **15∨** ♀ 50% V IN 15V v GND FAN7371 1000p 90% 90% ЮН ПЛо IN OUT 10% 10% (A) (B) Figure 23. Switching Time Test Circuit and Waveform Definitions

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly ori indirectly, any claim of personal injury or death

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC