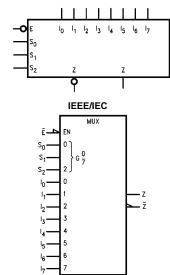


April 1988 Revised March 1999

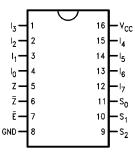
74F151A 8-Input Multiplexer

General Description

The F151A is a high-speed 8-input digital multiplexer. It provides in one package the ability to select one line of data from up to eight sources. The F151A can be used as a


universal function generator to generate any logic function of four variables. Both assertion and negation outputs are provided.

Ordering Code:


Order Number	Package Number	Package Description					
74F151ASC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow					
74F151ASJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide					
74F151APC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide					

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

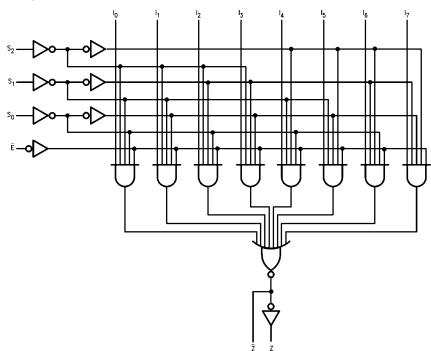
Unit Loading/Fan Out

Pin Names		U.L.	Input I _{IH} /I _{IL}	
	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
I ₀ –I ₇	Data Inputs	1.0/1.0	20 μA/-0.6 mA	
S ₀ -S ₂	Select Inputs	1.0/1.0	20 μA/-0.6 mA	
Ē	Enable Input (Active LOW)	1.0/1.0	20 μA/–0.6 mA	
Z	Data Output	50/33.3	–1 mA/20 mA	
Z	Inverted Data Output	50/33.3	−1 mA/20 mA	

Functional Description

The F151A is a logic implementation of a single pole, 8position switch with the switch position controlled by the state of three Select inputs, S₀, S₁, S₂. Both assertion and negation outputs are provided. The Enable input (\overline{E}) is active LOW. When it is not activated, the negation output is HIGH and the assertion output is LOW regardless of all other inputs. The logic function provided at the output is:

$$\begin{split} Z &= \overline{E} \bullet (I_0 \ \overline{S}_2 \ \overline{S}_1 \ \overline{S}_0 + I_1 \ \overline{S}_2 \ \overline{S}_1 \ S_0 + I_2 \ \overline{S}_2 \ S_1 \ \overline{S}_0 + \\ I_3 \ \overline{S}_2 \ S_1 \ S_0 + I_4 \ S_2 \ \overline{S}_1 \ \overline{S}_0 + I_5 \ S_2 \ \overline{S}_1 \ S_0 + \\ I_6 \ S_2 \ S_1 \ \overline{S}_0 + I_7 \ S_2 \ S_1 \ S_0) \end{split}$$


The F151A provides the ability, in one package, to select from eight sources of data or control information. By proper manipulation of the inputs, the F151A can provide any logic function of four variables and its negation.

Truth Table

	Inj	Out	puts		
Ē	S ₂	S ₁	S ₀	Z	z
Н	Х	Х	Х	Н	L
L	L	L	L	Ī ₀	I ₀
L	L	L	Н	Ī ₁	I ₁
L	L	Н	L	Ī ₂	l ₂
L	L	Н	Н	Ī ₃	I ₃
L	Н	L	L	Ī ₄	I ₄
L	Н	L	Н	Ī ₅	I ₅
L	Н	Н	L	Ī ₆	I ₆
L	Н	Н	Н	Ī ₇	I ₇

H = HIGH Voltage Level L = LOW Voltage Level

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

X = Immaterial

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

 $\begin{array}{ll} \mbox{Storage Temperature} & -65\mbox{°C to } +150\mbox{°C} \\ \mbox{Ambient Temperature under Bias} & -55\mbox{°C to } +125\mbox{°C} \\ \end{array}$

Junction Temperature under Bias —55°C to +175°C

Plastic -55°C to +150°C

V_{CC} Pin Potential to

 $\begin{array}{lll} \mbox{Ground Pin} & -0.5\mbox{V to } +7.0\mbox{V} \\ \mbox{Input Voltage (Note 2)} & -0.5\mbox{V to } +7.0\mbox{V} \\ \mbox{Input Current (Note 2)} & -30\mbox{ mA to } +5.0\mbox{ mA} \\ \end{array}$

Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

Standard Output -0.5V to V_{CC} 3-STATE Output -0.5V to +5.5V

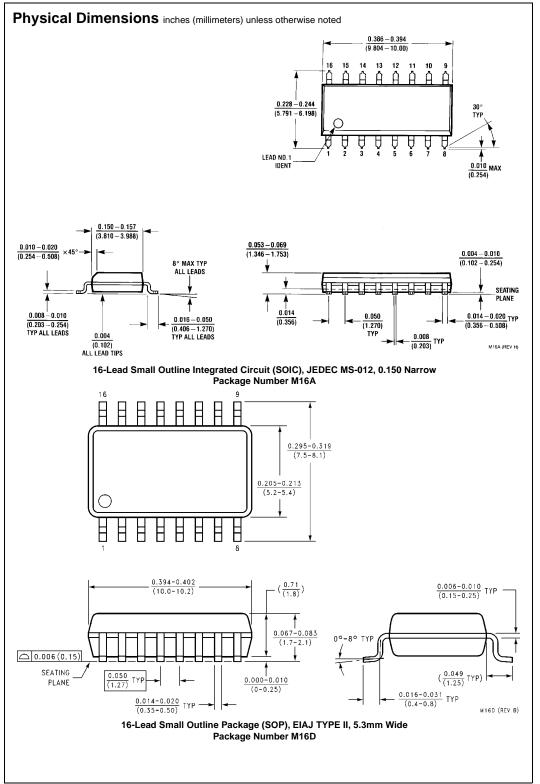
Current Applied to Output

in LOW State (Max) $\qquad \qquad \text{twice the rated I}_{\text{OL}} \, (\text{mA})$

Free Air Ambient Temperature 0°C to +70°C Supply Voltage +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation

under these conditions is not implied.


Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter		Min	Тур	Max	Units	V _{CC}	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH 10	0% V _{CC}	2.5			V	Min	I _{OH} = -1 mA	
	Voltage 59	% V _{CC}	2.7			V	IVIIN	$I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW								
	Voltage 10	0% V _{CC}			0.5	V	Min	I _{OL} = 20 mA	
I _{IH}	Input HIGH								
	Current				5.0	μΑ	Max	$V_{IN} = 2.7V$	
I _{BVI}	Input HIGH Current								
	Breakdown Test				7.0	μΑ	Max	$V_{IN} = 7.0V$	
I _{CEX}	Output HIGH								
	Leakage Current				50	μΑ	Max	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage		4.75			V	0.0	$I_{ID} = 1.9 \mu A$	
	Test							All Other Pins Grounded	
I _{OD}	Output Leakage				3.75	μΑ	0.0	V _{IOD} = 150 mV	
	Circuit Current							All Other Pins Grounded	
I _{IL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$	
Ios	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V	
I _{CC}	Power Supply Current			13.5	21.0	mA	Max	$V_{O} = HIGH$	

AC Electrical Characteristics

Symbol	Parameter		$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			$T_A = 0^{\circ}C$ to $+70^{\circ}C$ $C_L = 50 \text{ pF}$	
		Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	4.0	6.2	9.0	3.5	9.5	
t _{PHL}	S_n to \overline{Z}	3.2	5.2	7.5	3.2	7.5	ns
t _{PLH}	Propagation Delay	4.5	7.5	10.5	4.5	12.0	ns
t _{PHL}	S _n to Z	4.0	6.2	9.0	4.0	9.0	115
t _{PLH}	Propagation Delay	3.0	4.7	6.1	3.0	7.0	ns
t _{PHL}	E to Z	3.0	4.4	6.0	2.5	6.0	
t _{PLH}	Propagation Delay	5.0	7.0	9.5	4.0	10.5	ns
t _{PHL}	E to Z	3.5	5.3	7.0	3.0	7.5	
t _{PLH}	Propagation Delay	3.0	4.8	6.5	3.0	7.0	ns
t _{PHL}	I_n to \overline{Z}	1.5	2.5	4.0	1.5	5.0	
t _{PLH}	Propagation Delay	3.0	4.8	6.5	2.5	7.5	ns
t _{PHL}	I _n to Z	3.7	5.5	7.0	3.7	7.5	

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.740 - 0.780 0.090 (18.80 - 19.81)(2.286)**16 15 14 13 12 11 10 9** 16 T5 F INDEX AREA 0.250 ± 0.010 $\overline{(6.350 \pm 0.254)}$ PIN NO. 1 PIN NO. 1 1 2 3 4 5 6 7 8 1 2 OPTION 01 OPTION 02 $\frac{0.065}{(1.651)}$ $\frac{0.130 \pm 0.005}{(3.302 \pm 0.127)}$ $\frac{0.060}{(1.524)}$ TYP 4° TYP 0.300 - 0.320OPTIONAL (7.620 - 8.128)0.145 - 0.200 $\overline{(3.683 - 5.080)}$ 95°±5° 0.008 = 0.016 (0.203 = 0.406) TYP 0.020 0.280 (7.112) (0.508)0.125 - 0.150 (3.175 - 3.810) 0.030 ± 0.015 (0.762 ± 0.381) 0.014 = 0.023 (0.356 = 0.584) $\frac{0.100 \pm 0.010}{(2.540 \pm 0.254)}$ (0.325 +0.040 -0.015 0.050 ± 0.010 N16E (REV F) TYP (1.270 ± 0.254)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com