INTEGRATED CIRCUITS

Product specification

1990 Jul 12

IC15 Data Handbook

PHILIPS

74F382

FEATURES

- Performs six arithmetic and logic functions
- Selectable Low (clear) and High (preset) functions
- Low-input loading minimizes drive requirements
- Carry output for ripple expansion
- Overflow output for Two's Complement arithmetic

DESCRIPTION

The 74F382 performs three arithmetic and three logic operations on two 4-bit words, A and B. Two additional Select (S0–S2) input codes force the Function outputs Low or High. An overflow output is provided for convenience in Two's Complement arithmetic.

A carry output is provided for ripple expansion. For high-speed expansion using a carry look-ahead generator, refer to the 74F381 data sheet.

Signals applied to the Select inputs, S0–S2, determine the mode of operation, as indicated in the Function Select Table. An extensive listing of input and output levels is shown in the Function Table. The circuit performs the arithmetic functions for either active-Hlgh or active-Low operands, with output levels in the same convention. In the subtract operating modes, it is necessary to force a carry (High for active-Hlgh operands, Low for active-Low operands) into the Cn input of the least significant package. Ripple expansion is illustrated in Figure 1. The overflow output OVR is the Exclusive-OR of Cn+3 and Cn+4; a High signal on OVR indicates overflow in Two's complement operation (See Table 2 for Two's complement arithmetic). Typical delays for Figure 1 are given in Table 1. When the 74F382 is cascaded to handle word lengths longer than 4 bits, only the most significant overflow (OVR) output is used.

INPUT AND OUTPUT LOADING AND FAN OUT TABLE

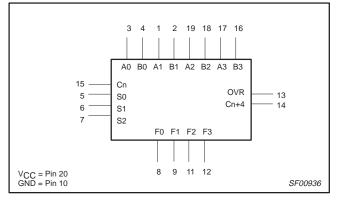
A1 1	20 VCC
B1 2	19 A2
A0 3	18 B2
B0 4	17 A3
S0 5	16 B3
S1 6	15 Cn
S2 7	14 Cn+4
F0 8	13 OVR
F1 9	12 F3
GND 10	11 F2
	SF00935

TYPE TYPICAL PROPAGATION DELAY		TYPICAL SUPPLY CURRENT (TOTAL)
74F382	7.0ns	54mA

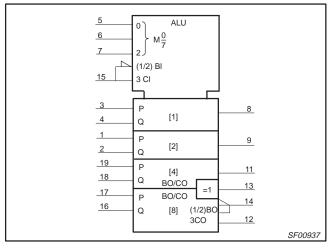
ORDERING INFORMATION

PIN CONFIGURATION

DESCRIPTION	$\begin{array}{l} \text{COMMERCIAL RANGE} \\ \text{V}_{CC} = 5\text{V}\pm10\%, \\ \text{T}_{amb} = 0^{\circ}\text{C to} + 70^{\circ}\text{C} \end{array}$	PKG DWG #		
20-pin plastic DIP	N74F382N	SOT146-1		
20-pin plastic SO	N74F382D	SOT163-1		

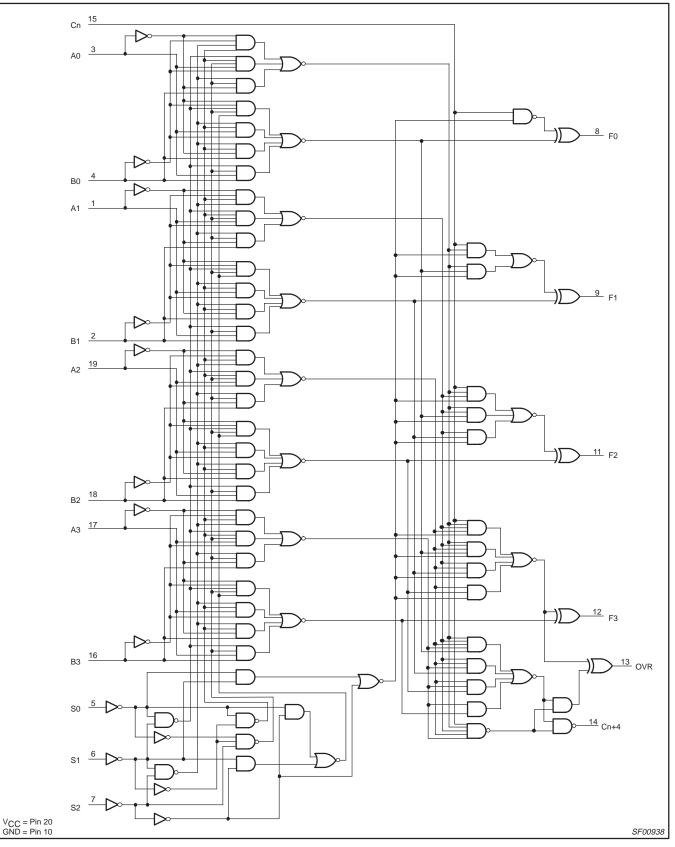

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A0 – A3	A operand inputs	1.0/4.0	20µA/2.4mA
B0 – B3	B operand inputs	1.0/4.0	20µA/2.4mA
S0 – S2	Function select inputs	1.0/1.0	20µA/0.6mA
Cn	Carry input	1.0/5.0	20µA/3.0mA
Cn+4	Carry output	50/33	1.0mA/20mA
OVR	Overflow output	50/33	1.0mA/20mA
F0–F3	Outputs	50/33	1.0mA/20mA

NOTE:


One (1.0) FAST unit load is defined as $20\mu A$ in the High state and 0.6mA in the Low state.

74F382

LOGIC SYMBOL



IEC/IEEE SYMBOL

74F382

LOGIC DIAGRAM

74F382

FUNCTION TABLE

		INP	UTS					OUTPUTS				00504100	OPERATING
S0	S1	S2	Cn	An	Bn	F0	F1	F2	F3	OVR	Cn+4	OPERANDS	MODE
L	L	L	L	Х	Х	L	L	L	L	н	Н		
L	L	L	н	Х	Х	L	L	L	L	н	Н		Clear
Н	L	L	L	L	L	н	Н	Н	Н	L	L		
н	L	L	L	L	Н	L	н	н	н	L	н		
н	L	L	L	н	L	L	L	L	L	L	L	Active-Low	
н	L	L	L	н	н	н	н	н	Н	L	L		
Н	L	L	н	L	L	L	L	L	L	L	Н		B minus A
н	L	L	н	L	н	н	Н	Н	Н	L	н		
Н	L	L	н	Н	L	н	L	L	L	L	L	Active-High	
Н	L	L	н	Н	H	L	L	L	L		- H		
	H	L	L	L	L	Н	- H		H	L	L		
L	н	L	L	L	Н	L	L	L	L		L		
	н			Н			Н	Н			н	Active-Low	
L	Н	L	L	Н	L H	L H	Н	Н	H H	L	L		
													A minus B
L	Н	L	н	L	L		L	L	L		Η -		
L	Н	L	Н	L	H	Н	L	L	L		L	Active-High	
L	Н	L	H	H	L	H	H	H	H	L	Н		
L	Н	L	Н	Н	Н	L	L	L	L	L	Н		
Н	Н	L	L	L	L	L L	L	L	L	L	L		
Н	Н	L	L	L	Н	н	Н	Н	Н	L	L		
Н	Н	L	L	Н	L	н	Н	Н	Н	L	L		
Н	Н	L	L	Н	Н	L	Н	Н	Н	L	Н		A Plus B
Н	Н	L	н	L	L	н	L	L	L	L	L		
Н	Н	L	н	L	Н	L	L	L	L	L	Н		
Н	Н	L	н	Н	L	L	L	L	L	L	Н		
Н	Н	L	н	Н	Н	н	Н	Н	Н	L	Н		
L	L	Н	Х	L	L	L	L	L	L	L	L		
L	L	Н	X	L	Н	н	Н	Н	Н	L	L		
L	L	Н	L	Н	L	н	н	Н	н	L	L		$A \oplus B$
L	L	Н	X	н	Н	L	L	L	L	н	н		
L	L	Н	н	н	L	н	н	н	н	н	н		
Н	L	Н	Х	L	L	L	L	L	L	L	L		
Н	L	Н	X	L	Н	Н	Н	Н	Н	L	L		
н	L	Н	X	H	L	н	Н	н	Н	L	L		A + B
н	L	H	L	н	H	н	н	н	н		L		
н	L	Н	н	н	н	н	Н	н	н	н	Н		
L	<u>– </u> н	H	X	L	L	L	L	L	L	Н	 H		
L	Н	Н	x	L	н		L	L	L	L	L		
L	Н	н	x	н	L		L	L		L H	н		AB
	н Н								L				AD
L		Н		Н	Н	Н	Н	Н	Н		L		
L	н	H	H	H	<u>н</u>	н	<u>H</u>	H	H	Н	H		
Н	Н	Н	X	L	L	н	Н	Н	H	L	L		
Н	Н	H	X	L	H	н	H	Н	H	L .	L		
Н	Н	Н	Х	Н	L	Н	Н	Н	Н	L	L		Preset
Н	Н	Н	L	Н	Н	н	Н	Н	Н	L	L		
Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н		

H = High voltage level L = Low voltage level X = Don't care

74F382

FUNCTION SELECT TABLE

	SELECT	OPERATING			
S0	S1	S2	MODE		
L	L	L	Clear		
н	L	L	B minus A		
L	Н	L A minus	A minus B		
Н	Н	L	A Plus B		
L	L	Н	$A \oplus B$		
н	L	Н	A + B		
L	Н	Н	AB		
Н	Н	Н	Preset		

H = High voltage level L = Low voltage level

Table 1. 16-Bit Delay Tabulation

PATH SEGMENT	TOWARD F	OUTPUT Cn+4, OVR
Ai or Bi to Cn+4	6.5ns	6.5ns
Cn to Cn+4	6.3ns	6.3ns
Cn to Cn+4	6.3ns	6.3ns
Cn to F	8.1ns	-
Cn to Cn+4, OVR	-	8.0ns
Total Delay	27.2ns	27.1ns

MSB			LSB	Numerical Values
L	L	L	L	0
L	L	L	Н	1
L	L	Н	L	2
L	L	Н	Н	3
L	Н	L	L	4
L	Н	L	Н	5
L	Н	Н	L	6
L	Н	Н	Н	7
н	L	L	L	-8
н	L	L	Н	-7
н	L	Н	L	-6
н	L	Н	Н	-5
н	Н	L	L	-4
н	н	L	Н	-3
н	н	н	L	-2
н	н	Н	Н	-1

Table 2. Two's Complement Arithmetic

High voltage level H =

L = Low voltage level

APPLICATION

Figure 1. 16-bit Look-ahead Carry ALU Expansion

74F382

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	–0.5 to +7.0	V
V _{IN}	Input voltage	-0.5 to +7.0	V
I _{IN}	Input current	-30 to +1	mA
V _{OUT}	Voltage applied to output in High output state	–0.5 to +V _{CC}	V
I _{OUT}	Current applied to output in Low output state	40	mA
T _{amb}	Operating free-air temperature range	0 to +70	°C
T _{stg}	Storage temperature range	–65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARMETER		UNIT		
STWBUL	SYMBOL	MIN	NOM	MAX	
V _{CC}	Supply voltage	4.5	5.0	5.5	V
V _{IH}	High-level input voltage	2.0			V
V _{IL}	Low-level input voltage			0.8	V
I _{IK}	Input clamp current			-18	mA
I _{OH}	High-level output current			-1	mA
I _{OL}	Low-level output current			20	mA
T _{amb}	Operating free-air temperature range	0		70	°C

DC ELECTRICAL CHARACTERISTICS

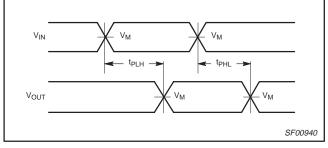
(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST		UNIT			
STMBOL		CONDITIONS ¹	MIN	TYP ²	MAX			
			$V_{CC} = MIN, V_{IL} = MAX,$	$\pm 10\% V_{CC}$	2.5			V
V _{OH}	High-level output voltage		V _{IH} = MIN, I _{OH} = MAX	±5%V _{CC}	2.7	3.4		V
M	Low-level output voltage		$V_{CC} = MIN, V_{IL} = MAX,$	$\pm 10\% V_{CC}$		0.30	0.50	V
V _{OL}			$V_{IH} = MIN, I_{OL} = MAX$	±5%V _{CC}		0.30	0.50	V
V _{IK}	Input clamp voltage		$V_{CC} = MIN, I_I = I_{IK}$		-0.73	-1.2	V	
l _l	Input current at maximum input v	roltage	$V_{CC} = MAX, V_I = 7.0V$			100	μΑ	
IIH	High-level input current		$V_{CC} = MAX, V_I = 2.7V$			20	μA	
		Cn					-3.0	mA
I _{IL}	Low-level input current	A0–A3, B0–B3	$V_{CC} = MAX, V_I = 0.5V$			-2.4	mA	
]				-0.6	mA	
I _{OS}	Short-circuit output current ³		V _{CC} = MAX	-60		-150	mA	
I _{CC}	Supply current (total)		V _{CC} = MAX			54	81	mA

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

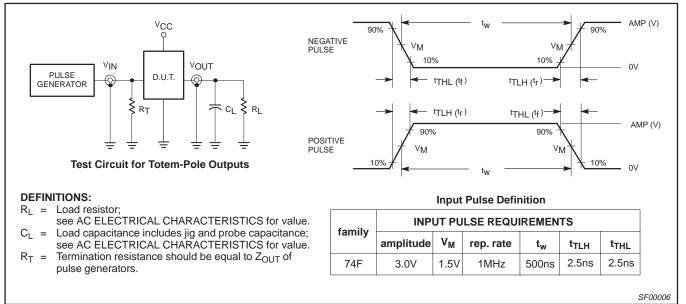
^{2.} All typical values are at $V_{CC} = 5V$, $T_{amb} = 25^{\circ}C$. 3. Not more than one output should be shorted at a time. For testing I_{OS} , the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

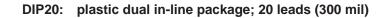

74F382

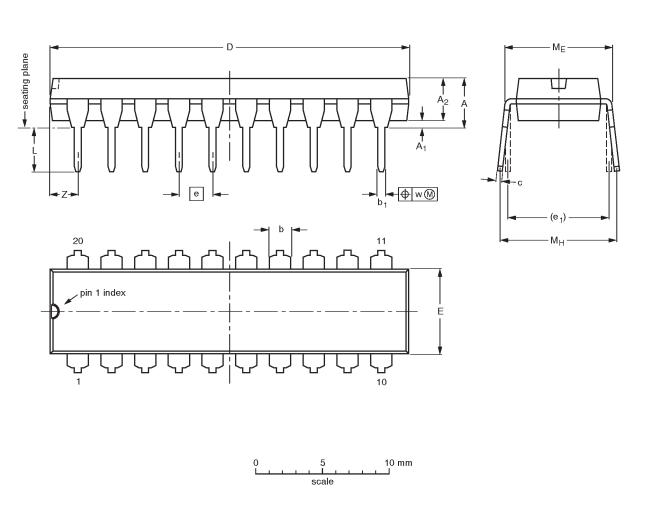
AC ELECTRICAL CHARACTERISTICS

			LIMITS					
SYMBOL	PARAMETER	TEST CONDITION	v.	_{mb} = +25 _{CC} = +5.0 0pF, R _L :	V	T _{amb} = 0°0 V _{CC} = +5. C _L = 50pF,	UNIT	
			MIN	TYP	MAX	MIN	MAX	
t _{PLH} t _{PHL}	Propagation delay Cn to Fn	Waveform 1	3.0 2.5	7.0 4.5	12.0 6.5	2.5 2.5	13.5 7.5	ns
t _{PLH} t _{PHL}	Propagation delay An or Bn to Fn	Waveform 1	3.5 3.0	8.0 6.0	13.5 10.0	3.5 2.5	17.0 11.0	ns
t _{PLH} t _{PHL}	Propagation delay Si to Fi	Waveform 1	5.5 5.5	9.0 7.5	15.0 10.5	5.5 5.5	16.0 12.0	ns
t _{PLH} t _{PHL}	Propagation delay Ai to Bi to Cn+4	Waveform 1	3.5 3.5	7.0 6.5	10.5 9.5	3.5 3.5	11.5 10.5	ns
t _{PLH} t _{PHL}	Propagation delay Si to OVR or Cn+4	Waveform 1	7.0 5.0	10.5 8.0	14.5 11.0	6.5 5.0	17.0 12.0	ns
t _{PLH} t _{PHL}	Propagation delay Cn to Cn+4	Waveform 1	3.0 3.5	4.5 5.0	6.0 6.5	2.5 3.5	6.5 7.0	ns
t _{PLH} t _{PHL}	Propagation delay Cn to OVR	Waveform 1	4.5 3.0	9.0 5.0	13.5 6.5	4.0 3.0	15.0 7.0	ns
t _{PLH} t _{PHL}	Propagation delay Ai or Bi to OVR	Waveform 1	6.0 3.5	9.0 6.5	12.5 9.0	5.5 3.5	16.5 10.0	ns

AC WAVEFORMS


For all waveforms, $V_M = 1.5V$.




Waveform 1. Propagation Delay for Non-Inverting or Inverting paths

74F382

TEST CIRCUIT AND WAVEFORM

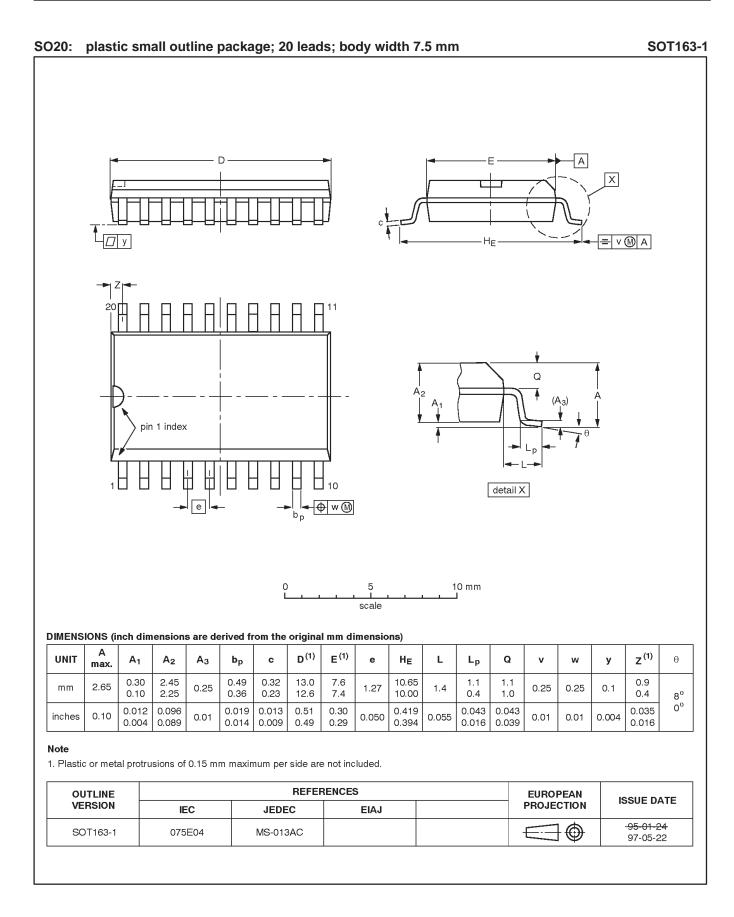
DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	c	D ⁽¹⁾	E ⁽¹⁾	e	e ₁	L	M _E	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	0.36 0.23	26.92 26.54	6.40 6.22	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.0
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.014 0.009	1.060 1.045	0.25 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN				
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE		
SOT146-1			SC603			-92-11-17- 95-05-24		


10

Product specification 74F382

SOT146-1

Product specification

74F382

74F382

Data sheet status

Data sheet status	Product status	Definition ^[1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

Document order number:

print code

Date of release: 10-98 9397-750-05124

Let's make things better.

