Low-Voltage CMOS Octal D-Type Flip-Flop

With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX374 is a high performance, non–inverting octal D–type flip–flop operating from a 2.3 to 3.6V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5V allows MC74LCX374 inputs to be safely driven from 5V devices.

The MC74LCX374 consists of 8 edge–triggered flip–flops with individual D–type inputs and 3–state true outputs. The buffered clock and buffered Output Enable (\overline{OE}) are common to all flip–flops. The eight flip–flops will store the state of individual D inputs that meet the setup and hold time requirements on the LOW–to–HIGH Clock (CP) transition. With the \overline{OE} LOW, the contents of the eight flip–flops are available at the outputs. When the \overline{OE} is HIGH, the outputs go to the high impedance state. The \overline{OE} input level does not affect the operation of the flip–flops.

- Designed for 2.3 to 3.6V V_{CC} Operation
- 5V Tolerant Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- I_{OFF} Specification Guarantees High Impedance When $V_{CC} = 0V$
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10μA)
 Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

MC74LCX374

LOW-VOLTAGE CMOS
OCTAL D-TYPE FLIP-FLOP

DW SUFFIX PLASTIC SOIC CASE 751D-04

M SUFFIX
PLASTIC SOIC EIAJ
CASE 967-01

DT SUFFIXPLASTIC TSSOP
CASE 948E-02

PIN NAMES

Pins	Function
ŌĒ	Output Enable Input
CP	Clock Pulse Input
D0-D7	Data Inputs
00–07	3-State Outputs

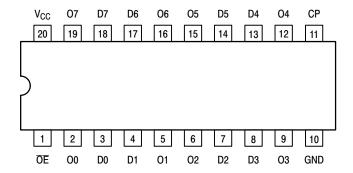


Figure 1. Pinout: 20-Lead (Top View)

Figure 2. LOGIC DIAGRAM

	INPUTS				OUTPUTS	
ŌĒ	CP	Dn	On	OPERATING MODE		
L L	↑	l h	L H	Load and Read Register		
L	1	Х	NC	Hold and Read Register		
Н	1	Х	Z	Hold and Disable Outputs		
H H	<u>†</u>	l h	Z Z	Load Internal Register and Disable Outputs		

^{1.} H = High Voltage Level; h = High Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; L = Low Voltage Level; I = Low Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; NC = No Change, State Prior to Low-to-High Clock Transition; X = High or Low Voltage Level and Transitions are Acceptable; Z = High Impedance State; ↑ = Low-to-High Transition; ♣ Not a Low-to-High Transition; For I_{CC} Reasons DO NOT FLOAT Inputs

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	$-0.5 \le V_1 \le +7.0$		V
V _O	DC Output Voltage	$-0.5 \le V_O \le +7.0$	Output in 3–State	V
		$-0.5 \le V_{O} \le V_{CC} + 0.5$	Note 1.	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	$V_O > V_{CC}$	mA
Io	DC Output Source/Sink Current	±50		mA
Icc	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C

^{*} Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute—maximum—rated conditions is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Unit
Vcc	Supply Voltage Operating Data Retention Only	2.0 1.5	3.3 3.3	3.6 3.6	٧
V _I	Input Voltage	0		5.5	V
Vo	Output Voltage (HIGH or LOW State) (3–State)	0 0		V _{CC} 5.5	٧
I _{OH}	HIGH Level Output Current, V _{CC} = 3.0V – 3.6V			-24	mA
I _{OL}	LOW Level Output Current, V _{CC} = 3.0V – 3.6V			24	mA
I _{OH}	HIGH Level Output Current, V _{CC} = 2.7V – 3.0V			-12	mA
I _{OL}	LOW Level Output Current, V _{CC} = 2.7V - 3.0V			12	mA
T _A	Operating Free–Air Temperature	-40		+85	°C
Δt/ΔV	Input Transition Rise or Fall Rate, V_{IN} from 0.8V to 2.0V, $V_{CC} = 3.0V$	0		10	ns/V

DC ELECTRICAL CHARACTERISTICS

			T _A = -40°C	to +85°C	
Symbol	Characteristic	Condition	Min	Max	Unit
V _{IH}	HIGH Level Input Voltage (Note 2.)	2.7V ≤ V _{CC} ≤ 3.6V	2.0		V
V _{IL}	LOW Level Input Voltage (Note 2.)	2.7V ≤ V _{CC} ≤ 3.6V		0.8	V
V _{OH}	HIGH Level Output Voltage	$2.7V \le V_{CC} \le 3.6V; I_{OH} = -100\mu A$	V _{CC} - 0.2		V
		$V_{CC} = 2.7V; I_{OH} = -12mA$	2.2]
		$V_{CC} = 3.0V; I_{OH} = -18mA$	2.4]
		$V_{CC} = 3.0V; I_{OH} = -24mA$	2.2]
V _{OL}	LOW Level Output Voltage	$2.7V \le V_{CC} \le 3.6V; I_{OL} = 100\mu A$		0.2	٧
		V _{CC} = 2.7V; I _{OL} = 12mA		0.4	
		V _{CC} = 3.0V; I _{OL} = 16mA		0.4]
		V _{CC} = 3.0V; I _{OL} = 24mA		0.55	

^{2.} These values of V_I are used to test DC electrical characteristics only.

^{1.} Output in HIGH or LOW State. $I_{\rm O}$ absolute maximum rating must be observed.

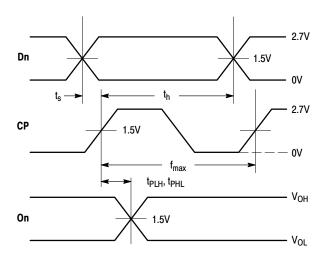
DC ELECTRICAL CHARACTERISTICS (continued)

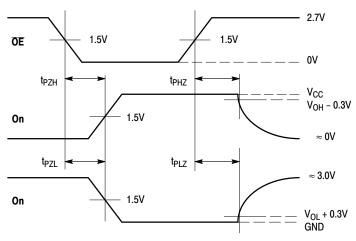
			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		
Symbol	Characteristic	Condition	Min	Max	Unit
I _I	Input Leakage Current	$2.7V \le V_{CC} \le 3.6V; \ 0V \le V_{I} \le 5.5V$		±5.0	μΑ
l _{OZ}	3–State Output Current	$2.7 \le V_{CC} \le 3.6V$; $0V \le V_{O} \le 5.5V$; $V_{I} = V_{IH}$ or V_{IL}		±5.0	μА
I _{OFF}	Power–Off Leakage Current	$V_{CC} = 0V$; V_I or $V_O = 5.5V$		10	μΑ
Icc	Quiescent Supply Current	$2.7 \le V_{CC} \le 3.6V$; $V_I = GND \text{ or } V_{CC}$		10	μΑ
		$2.7 \le V_{CC} \le 3.6V$; $3.6 \le V_I$ or $V_O \le 5.5V$		±10	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$2.7 \le V_{CC} \le 3.6V; V_{IH} = V_{CC} - 0.6V$		500	μΑ

AC CHARACTERISTICS ($t_R = t_F = 2.5 \text{ns}$; $C_L = 50 \text{pF}$; $R_L = 500 \Omega$)

				Lin	nits		
				T _A = -40°	C to +85°C		
			V _{CC} = 3.0	0V to 3.6V	V _{CC} =	= 2.7V	
Symbol	Parameter	Waveform	Min	Max	Min	Max	Unit
f _{max}	Clock Pulse Frequency	1	150				MHz
t _{PLH} t _{PHL}	Propagation Delay CP to O _n	1	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	ns
t _{PZH} t _{PZL}	Output Enable Time to HIGH and LOW Levels	2	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	ns
t _{PHZ}	Output Disable Time from HIGH and LOW Levels	2	1.5 1.5	7.5 7.5	1.5 1.5	8.5 8.5	ns
t _s	Setup Time, HIGH or LOW D _n to CP	1	2.5		2.5		ns
t _h	Hold Time, HIGH or LOW D _n to CP	1	1.5		1.5		ns
t _w	CP Pulse Width, HIGH or LOW	3	3.3		3.3		ns
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 3.)			1.0 1.0			ns

Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
 The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

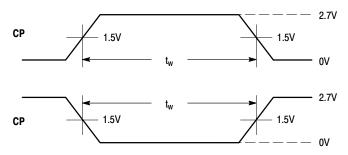

DYNAMIC SWITCHING CHARACTERISTICS


			Т	A = +25°	С	
Symbol	Characteristic	Condition	Min	Тур	Max	Unit
V _{OLP}	Dynamic LOW Peak Voltage (Note 4.)	$V_{CC} = 3.3V$, $C_L = 50pF$, $V_{IH} = 3.3V$, $V_{IL} = 0V$		0.8		V
V _{OLV}	Dynamic LOW Valley Voltage (Note 4.)	$V_{CC} = 3.3V$, $C_L = 50pF$, $V_{IH} = 3.3V$, $V_{IL} = 0V$		0.8		V

^{4.} Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

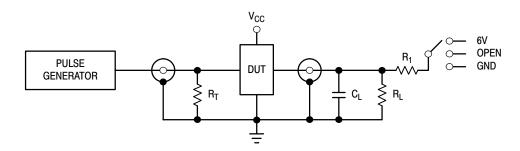
Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10MHz, $V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	25	pF



WAVEFORM 1 - PROPAGATION DELAYS, SETUP AND HOLD TIMES

 t_R = t_F = 2.5ns, 10% to 90%; f = 1MHz; t_W = 500ns

WAVEFORM 2 - OUTPUT ENABLE AND DISABLE TIMES

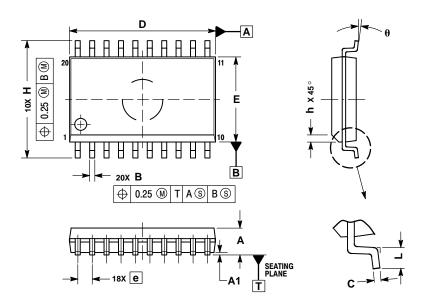

 $t_R = t_F = 2.5$ ns, 10% to 90%; f = 1MHz; $t_W = 500$ ns

WAVEFORM 3 - PULSE WIDTH

 t_R = t_F = 2.5ns (or fast as required) from 10% to 90%; Output requirements: $V_{OL} \le 0.8V$, $V_{OH} \ge 2.0V$

Figure 3. AC Waveforms

TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V
Open Collector/Drain t _{PLH} and t _{PHL}	6V
t _{PZH} , t _{PHZ}	GND


C_L = 50pF or equivalent (Includes jig and probe capacitance)

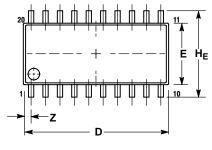
 $R_L = R_1 = 500\Omega$ or equivalent $R_T = Z_{OUT}$ of pulse generator (typically 50Ω)

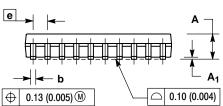
Figure 4. Test Circuit

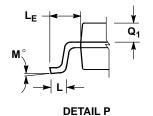
OUTLINE DIMENSIONS

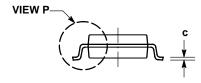
DW SUFFIX PLASTIC SOIC PACKAGE CASE 751D-04 ISSUE E

NOTES:


- NOTES:


 1. DIMENSIONS ARE IN MILLIMETERS.
 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION. MAXIMUM MATERIAL CONDITION.


	MILLIMETERS			
DIM	MIN	MAX		
Α	2.35	2.65		
A1	0.10	0.25		
В	0.35	0.49		
С	0.23	0.32		
D	12.65	12.95		
E	7.40	7.60		
е	1.27	BSC		
Н	10.05	10.55		
h	0.25	0.75		
L	0.50	0.90		
θ	0 °	7 °		

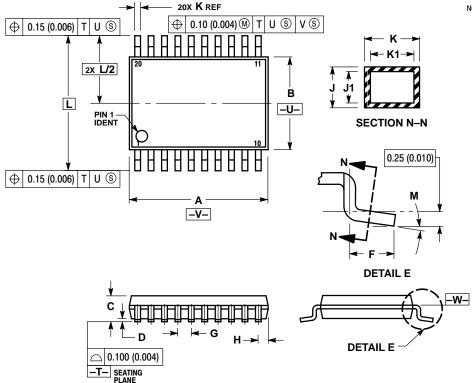

M SUFFIX PLASTIC SOIC EIAJ PACKAGE

CASE 967-01 ISSUE O

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.


 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006)
- PER SIDE.
 TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
 THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH
 DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
С	0.18	0.27	0.007	0.011
D	12.35	12.80	0.486	0.504
Е	5.10	5.45	0.201	0.215
е	1.27	BSC	0.050	BSC
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
M	0 °	10°	0°	10°
Q ₁	0.70	0.90	0.028	0.035
Z		0.81		0.032

OUTLINE DIMENSIONS

DT SUFFIX

PLASTIC TSSOP PACKAGE CASE 948E-02 ISSUE A

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M. 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- EXCEED 0.25 (0.010) PER SIDE.

 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	6.40	6.60	0.252	0.260
В	4.30	4.50	0.169	0.177
С	-	1.20		0.047
D	0.05	0.15	0.002	0.006
Ŧ	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.27	0.37	0.011	0.015
L	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
٦	6.40 BSC		0.252 BSC	
M	0°	8°	0°	8°

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–german@hibbertco.com

French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

glish Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll–Free from Mexico: Dial 01–800–288–2872 for Access – then Dial 866–297–9322

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

.._..

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.