QUAD 2-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

The LSTTL/MSI SN54/74LS257B and the SN54/74LS258B are Quad 2-Input Multiplexers with 3-state outputs. Four bits of data from two sources can be selected using a Common Data Select input. The four outputs present the selected data in true (non-inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Output Enable (E_{O}) Input, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Motorola TTL families.

- Schottky Process For High Speed
- Multiplexer Expansion By Tying Outputs Together
- Non-Inverting 3-State Outputs
- Input Clamp Diodes Limit High Speed Termination Effects
- Special Circuitry Ensures Glitch Free Multiplexing
- ESD > 3500 Volts

CONNECTION DIAGRAM DIP (TOP VIEW)

$V_{C C}=P$ IN 16
GND $=$ PIN 8

NOTE:
The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package

QUAD 2-INPUT MULTIPLEXER WITH 3-STATE OUTPUTS

LOW POWER SCHOTTKY

SN54/74LS257B • SN54/74LS258B

FUNCTIONAL DESCRIPTION

The LS257B and LS258B are Quad 2-Input Multiplexers with 3-state outputs. They select four bits of data from two sources each under control of a Common Data Select Input. When the Select Input is LOW, the I_{0} inputs are selected and when Select is HIGH, the l_{1} inputs are selected. The data on the selected inputs appears at the outputs in true (noninverted) form for the LS257B and in the inverted form for the LS258B.

The LS257B and LS258B are the logic implementation of a 4 -pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select Input. The logic equations for the outputs are shown below:

LS257B

$\underline{Z}_{a}=\underline{E}_{0} \bullet\left(I_{1 a} \cdot S+I_{0 a} \bullet \underline{S}\right) \underline{Z}_{b}=\underline{E}_{0} \bullet\left(I_{1 b} \bullet S+I_{0 b} \cdot \underline{S}\right)$
$Z_{c}=E_{0} \bullet\left(I_{1 c} \bullet S+I_{0 c} \bullet S\right) Z_{d}=E_{0} \bullet\left(I_{1 d} \bullet S+I_{0 d} \bullet S\right)$

When the Output Enable Input $\left(\mathrm{E}_{0}\right)$ is HIGH, the outputs are forced to a high impedance "off" state. If the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so there is no overlap.

[^0]TRUTH TABLE

OUTPUT ENABLE	SELECT INPUT	DATA INPUTS		OUTPUTS LS257B	OUTPUTS LS258B
E $_{\mathbf{O}}$	\mathbf{S}	$\mathrm{I}_{\mathbf{0}}$	$\mathrm{I}_{\mathbf{1}}$	\mathbf{Z}	\mathbf{Z}
H	X	X	X	(Z)	(Z)
L	H	X	L	L	H
L	H	X	H	H	L
L	L	L	X	L	H
L	L	H	X	H	L

H = HIGH Voltage Level
L = LOW Voltage Level
X = Don't Care
(Z) = High Impedance (off)

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	54	4.5	5.0	5.5	V
		74	4.75	5.0	5.25	
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
IOH	Output Current — High	54			-1.0	mA
		74			-2.6	
IOL	Output Current - Low	54			12	mA
		74			24	

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter		Limits			Unit	Test Conditions		
			Min	Typ	Max				
V_{IH}	Input HIGH Voltage		2.0			V	Guaranteed Inpu All Inputs	HIGH Voltage for	
V_{IL}	Input LOW Voltage	54			0.7	V	Guaranteed Input LOW Voltage for All Inputs		
		74			0.8				
V_{IK}	Input Clamp Diode Voltage			-0.65	-1.5	V	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}, \mathrm{I}_{\text {I }}$	18 mA	
V_{OH}	Output HIGH Voltage	54	2.4	3.4		V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I} \mathrm{OH}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ & \text { or } \mathrm{V}_{\mathrm{IL}} \text { per Truth Table } \end{aligned}$		
		74	2.4	3.1		V			
V_{OL}	Output LOW Voltage	54, 74		0.25	0.4	V	$\mathrm{IOL}=12 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \mathrm{MIN}, \\ & \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {IL }} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \text { per Truth Table } \end{aligned}$	
		74		0.35	0.5	V	$\mathrm{IOL}=24 \mathrm{~mA}$		
IOZH	Output Off Current - HIGH				20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$		
IOZL	Output Off Current - LOW				-20	$\mu \mathrm{A}$	$\mathrm{V}_{\text {CC }}=\mathrm{MAX}, \mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}$		
${ }_{\mathrm{IH}}$	Input HIGH Current Other Inputs S Inputs				$\begin{aligned} & 20 \\ & 40 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$		
	Other Inputs S Inputs				$\begin{aligned} & \hline 0.1 \\ & 0.2 \end{aligned}$	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		
IIL	Input LOW Current All Inputs				-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$		
los	Short Circuit Current (Note 1)		-30		-130	mA	$V_{C C}=$ MAX		
ICC	Power Supply Current Total, Output HIGH				$\begin{aligned} & 10 \\ & 9.0 \end{aligned}$	mA	$V_{C C}=M A X$		
	Total, Output LOW	$\begin{array}{\|l} \text { LS257B } \\ \text { LS258B } \end{array}$			16	mA			
	Total, Output 3-State	$\begin{array}{\|l\|} \hline \text { LS257B } \\ \text { LS258B } \end{array}$			19 16	mA			

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$ See SN54LS251 for Waveforms

Symbol	Parameter	Limits			Unit	Test Conditions	
		Min	Typ	Max			
$\begin{array}{\|l\|l} \text { tpLH } \\ \text { tpHL } \end{array}$	Propagation Delay, Data to Output		$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 13 \\ & 15 \end{aligned}$	ns	Figures 1 \& 2	$C_{L}=45 \mathrm{pF}$
	Propagation Delay, Select to Output		$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 21 \\ & 21 \end{aligned}$	ns	Figures 1 \& 2	
tPZH	Output Enable Time to HIGH Level		20	25	ns	Figures 4 \& 5	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$
tPZL	Output Enable Time to LOW Level		20	25	ns	Figures 3 \& 5	
tpLZ	Output Disable Time to LOW Level		16	25	ns	Figures 3 \& 5	$\begin{aligned} & C_{\mathrm{L}}=5.0 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=667 \Omega \end{aligned}$
tPHZ	Output Disable Time from HIGH Level		18	25	ns	Figures 4 \& 5	

[^0]: LS258B
 $\underline{Z}_{a}=\underline{E}_{0} \bullet\left(I_{1 a} \cdot S+I_{0 a} \bullet \underline{S}\right) \underline{Z}_{b}=\underline{E}_{0} \bullet\left(I_{1 b} \bullet S+I_{0 b} \bullet \underline{S}\right)$
 $Z_{c}=E_{0} \bullet\left(I_{1 c} \bullet S+I_{0 c} \bullet S\right) Z_{d}=E_{0} \bullet\left(I_{1 d} \bullet S+I_{0 d} \cdot S\right)$

