

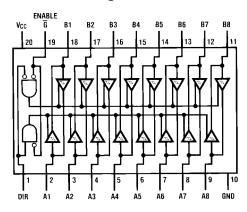
August 1986 Revised March 2000

DM74LS645 Octal Bus Transceiver

General Description

These octal bus transceivers are designed for asynchronous two-way communication between data buses. The devices transmit data from the A bus to the B bus or from the B bus to the A bus depending upon the level at the direction control (DIR) input. The enable input $(\overline{\mathbf{G}})$ can be used to disable the device so that the buses are effectively isolated.

Features


- Bi-directional bus transceivers in high-density 20-pin packages
- Hysteresis at bus inputs improves noise margins
- 3-STATE outputs

Ordering Code:

Order Number	Package Number	Package Description				
DM74LS645WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide				
DM74LS645N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide				

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Function Table

	ontrol puts	DM74LS645
G	DIR	
L	L	B data to A bus
L	Н	A data to B bus
Н	Х	Isolation

H = HIGH Level L = LOW Level X = Irrelevant

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V Input Voltage 7V Operating Free Air Temperature Range $0^{\circ}\text{C to } +70^{\circ}\text{C}$ Storage Temperature Range $-55^{\circ}\text{C to } +150^{\circ}\text{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage (Note 2)	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.6	V
I _{OH}	HIGH Level Output Current			-15	mA
I _{OL}	LOW Level Output Current			24	mA
T _A	Free Air Operating Temperature	0		70	°C

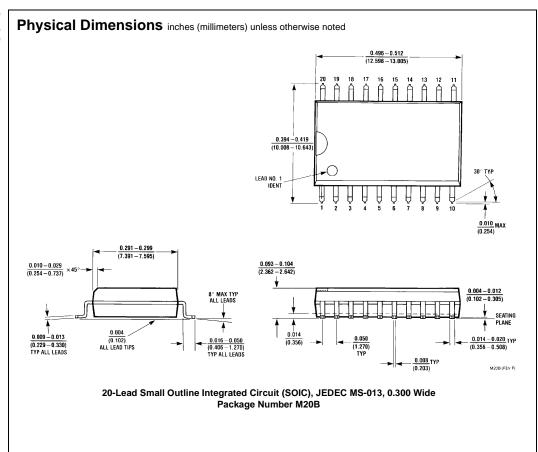
Note 2: Voltage values are with respect to the network ground terminal.

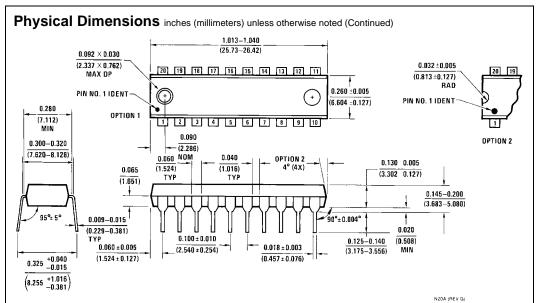
Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions (Note 3)			Min	Typ (Note 4)	Max	Units
VI	Input Clamp Voltage	V _{CC} = Min, I _I = 18 mA					-1.5	V
H _{YS}	Hysteresis (V _{T+} – V ₋)	V _{CC} = Min			0.2	0.4		V
	A or B Input							
V _{OH}	HIGH Level Output Voltage	$V_{CC} = Min, V_{IH} = 2V,$ $I_{OH} = -3 \text{ mA}$		2.4	3.4		V	
		V _{IL} = Max		$I_{OH} = Max$	2			1 v
V _{OL}	LOW Level Output Voltage	$V_{CC} = Min, V_{IH} = 2V,$ I_{OL}		I _{OL} = 12 mA		0.25	0.4	V
		V _{IL} = Max		$I_{OL} = 24 \text{ mA}$		0.35	0.5	v
I _{OZH}	Off-State Output Current,	V _{CC} = Max, G at 2	V _{CC} = Max, G at 2V,				20	μА
	HIGH Level Voltage Applied	$V_O = 2.7V$					20	μΑ
I _{OZL}	Off-State Output Current,	V _{CC} = Max, G at 2V					-400	μА
	LOW Level Voltage Applied	$V_{O} = 0.4V$					-400	μΑ
l _l	Input Current at	V _{CC} = Max	A or B	$V_I = 5.5V$			0.1	mA
	Maximum Input Voltage		DIR or G	$V_I = 7V$			0.1	IIIA
I _{IH}	HIGH Level Input Current	V _{CC} = Max, V _{IH} = 2.7					20	μΑ
I _{IL}	LOW Level Input Current	V _{CC} = Max, V _{IL} = 0.4V					-0.4	mA
Ios	Short Circuit Output Current (Note 5)	V _{CC} = Max			-40		-225	mA
I _{CC}	Total Supply				48	70		
	Current			Outputs Open		62	90	mA
		Outputs at Hi-Z				64	95	

Note 3: For conditions shown as Min or Max, use the appropriate value specified under Recommended Operating Conditions.


Note 4: All typicals are at V_{CC} = 5V, T_A = 25°C.


Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

	Parameter	From (Input) To (Output)					
Symbol			C _L = 45 pF		C _L = 5 pF		Units
			Min	Max	Min	Max	1
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	A to B		15			ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	A to B		15			ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	B to A		15			ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	B to A		15			ns
t _{PZL}	Output Enable Time to LOW Level	G to A		40			ns
t _{PZH}	Output Enable Time to HIGH Level	G to A		40			ns
t _{PZL}	Output Enable Time to LOW Level	G to B		40			ns
t _{PZH}	Output Enable Time to HIGH Level	G to B		40			ns
t _{PLZ}	Output Disable Time to LOW Level	G to A				25	ns
t _{PHZ}	Output Disable Time to HIGH Level	G to A				25	ns
t _{PLZ}	Output Disable Time to LOW Level	G to B				25	ns
t _{PHZ}	Output Disable Time to HIGH Level	G to B				25	ns

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com