74VHC139 Dual 2-to-4 Decoder/Demultiplexer

General Description

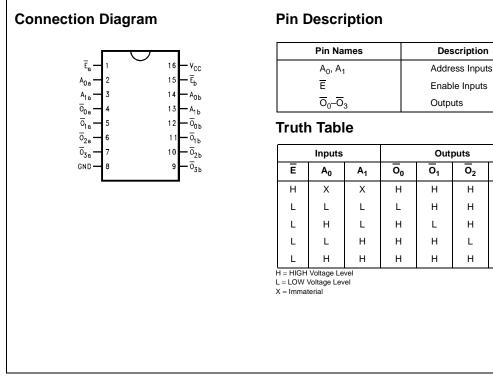
FAIRCHILD

SEMICONDUCTOR

The VHC139 is an advanced high speed CMOS Dual 2-to-4 Decoder/Demultiplexer fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

The active LOW enable input can be used for gating or it can be used as a data input for demultiplexing applications. When the enable input is held HIGH, all four outputs are fixed at a HIGH logic level independent of the other inputs. An input protection circuit ensures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

Features


High Speed: $t_{PD} = 5.0$ ns (typ) at $T_A = 25^{\circ}C$

- Low power dissipation: $I_{CC} = 4 \mu A$ (Max.) at $T_A = 25^{\circ}C$
- High noise immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (Min.)
- Power down protection is provided on all inputs
- Pin and function compatible with 74HC139

Ordering Code:

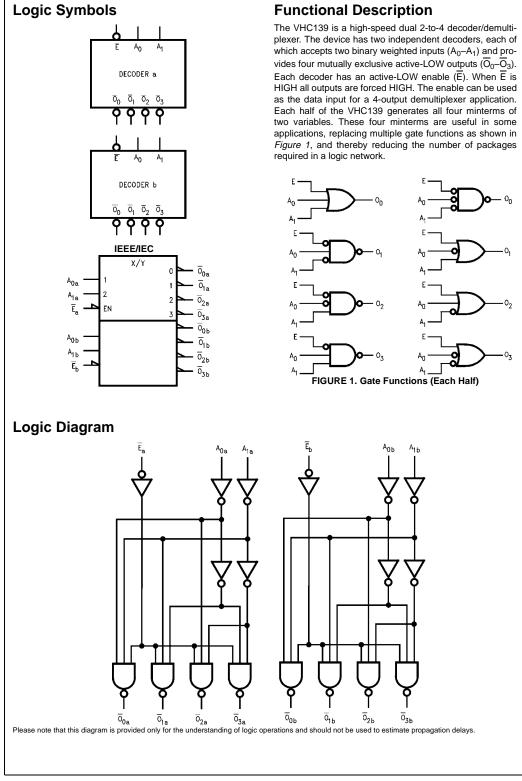
Order Number	Package Number	Package Description				
74VHC139M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow				
74VHC139SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
74VHC139MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				
74VHC139N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

www.fairchildsemi.com

03

Н


н

Н

Н

L

74VHC139

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Voltage (V _{IN})	-0.5V to +7.0V
DC Output Voltage (V _{OUT})	–0.5V to V_{CC} + 0.5V
Input Diode Current (I _{IK})	–20 mA
Output Diode Current (I _{OK})	±20 mA
DC Output Current (I _{OUT})	±25 mA
DC V _{CC} /GND Current (I _{CC})	±75 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

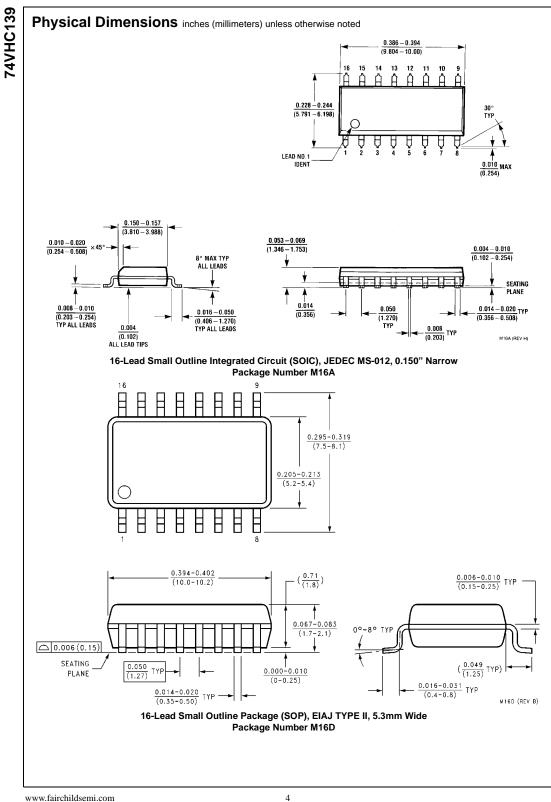
Recommended Operating

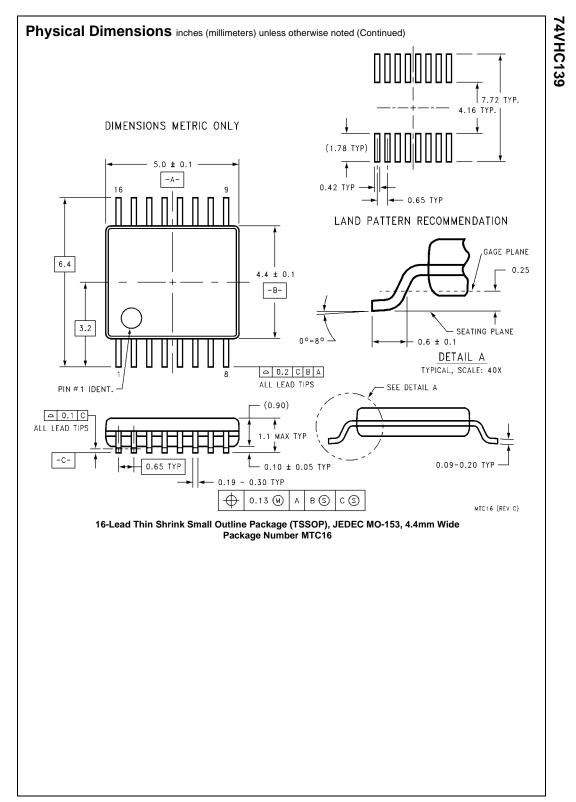
$\label{eq:linear} \begin{array}{llllllllllllllllllllllllllllllllllll$	
Supply Voltage (V _{CC})	2.0V to +5.5V
Input Voltage (V _{IN})	0V to +5.5V
Output Voltage (V _{OUT})	0V to V _{CC}
Operating Temperature (T _{OPR})	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
$V_{CC}=3.3V\pm0.3V$	0~100 ns/V
$V_{CC}=5.0V\pm0.5V$	0 ~ 20 ns/V

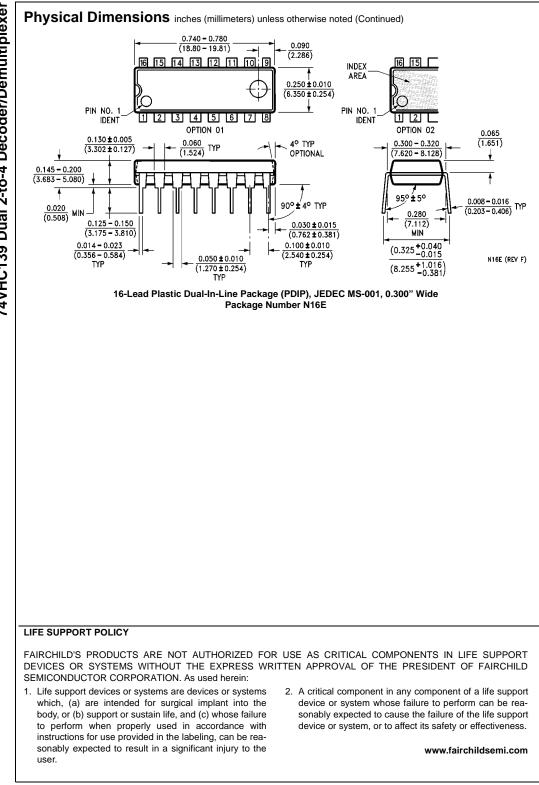
Note 1: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics


Symbol	Parameter	V _{cc}	T _A = 25°C			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	
Symbol	Falameter	(V)	Min Typ		Max	Min	Max	Units	Conditions	
V _{IH}	HIGH Level	2.0	1.50			1.50		V		
	Input Voltage	3.0 - 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
V _{IL}	LOW Level	2.0			0.50		0.50	V		
	Input Voltage	3.0 - 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			$V_{IN} = V_{IH}$ I _C	_{DH} = -50 μA
	Output Voltage	3.0	2.9	3.0		2.9		V	or V _{IL}	
		4.5	4.4	4.5		4.4				
		3.0	2.58			2.48		V	١ _c	_{DH} = -4 mA
		4.5	3.94			3.80		v	١ _c	_{DH} = -8 mA
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IH}$ I _C	_{DL} = 50 µA
	Output Voltage	3.0		0.0	0.1		0.1	V	or V _{IL}	
		4.5		0.0	0.1		0.1			
		3.0			0.36		0.44	V	١ _c	_{DL} = 4 mA
		4.5			0.36		0.44	v	١ _c	_{DL} = 8 mA
I _{IN}	Input Leakage Current	0 - 5.5			±0.1		±1.0	μΑ	V _{IN} = 5.5V or	r GND
I _{CC}	Quiescent Supply Current	5.5			4.0		40.0	μΑ	$V_{IN} = V_{CC}$ or	GND


AC Electrical Characteristics


Symbol	Parameter	V _{CC} (V)	T _A = 25°C			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	
Cynhod			Min	Тур	Max	Min	Max	onno	Conditions	
t _{PLH}	Propagation Delay	3.3 ± 0.3		7.2	11.0	1.0	13.0	ns	$C_L = 15 \text{ pF}$	
t _{PHL}	A_n to \overline{O}_n			9.7	14.5	1.0	16.5	115	C _L = 50 pF	
		5.0 ± 0.5		5.0	7.2	1.0	8.5	ns	$C_L = 15 \text{ pF}$	
				6.5	9.2	1.0	10.5	115	$C_L = 50 \text{ pF}$	
t _{PLH}	Propagation Delay	3.3 ± 0.3		6.4	9.2	1.0	11.0	ns	C _L = 15 pF	
t _{PHL}	\overline{E}_n to \overline{O}_n			8.9	12.7	1.0	14.5	115	C _L = 50 pF	
		5.0 ± 0.5		4.4	6.3	1.0	7.5	ns	C _L = 15 pF	
				5.9	8.3	1.0	9.5	113	$C_L = 50 \text{ pF}$	
CIN	Input Capacitance			4	10		10	pF	V _{CC} = Open	
C _{PD}	Power Dissipation Capacitance			26				pF	(Note 3)	

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (opr.) = C_{PD} * V_{CC} * f_{IN} + $I_{CC}/2$ (per decoder).

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications