3-TERMINAL POSITIVE VOLTAGE REGULATOR

■ GENERAL DESCRIPTION

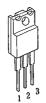
The NJM78M00 series of 3-Terminal Positive Voltage Regulators is constructed using the New JRC Planar epitaxial process. These regulators employ internal current-limiting, thermal-shutdown and safearea compensation making them essentially indestructible. If adequate heat sinking is provided, they can deliver in excess of 500mA output current. They are intended as fixed voltage regulation in a wide range of applications including local or on-card regulation for elimination of noise and distribution problems associated with single point regulation. In addition to use as fixed voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents.

■ FEATURES

- Internal Short Circuit Current Limit
- Internal Thermal Overload Protection
- **Excellent Ripple Rejection**

Bipolar Technology

- Guarantee'd 500mA Output Current
- Package Outline


TO-220F, TO-252

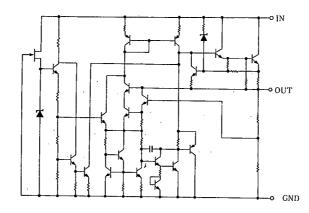
■ PACKAGE OUTLINE

(TO-220F)

(TO-252)

(TO-252)

3. OUT


NJM78MOOFA	NJM78MOODLA
1. IN	1. IN
2. GND	2. GND

NJM78M00DL1A I.IN 2.GND 3.OUT

(note) The radiation fin is connected pin2.

3. OUT

■ EQUIVALENT CIRCUIT

6

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	MAXIM	UNIT			
Input Voltage		78M05~78M09		35		
	Vin	78M12~78M15		35	V	
		78M18~78M24		40		
Storge Temperature Range	Tstg	-40	-40 ∼ +150			
Operating Temperature Range	Operating Juncti	Operating Junction Temperature Tj −30~+150			90	
	Operating Juncti	Operating Junction Temperature Top		-40~+85	${\mathbb C}$	
Power Dissipation		TO220F	7.5 (Tc≤75°C)			
	PD	TO252	1.0 (Γa=25℃)	W	
			7.5 (Γc≦56°C)		

■ THERMAL CHARACTERISTICS

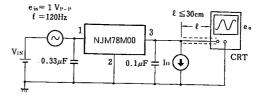
	·		TO220F	TO252	
Thermal Resistance	Junction-to-Ambient Temperature	θ ja	60	125	°C/W
Thermai Resistance	Junction-to-Case	heta jc	7	12.5	C/W

■ ELECTRICAL CHARACTERISTICS (C_{IN}=0.33 µF, Co=0.1 µF, T_j=25℃) Measurement is to be conducted in pulse testing.

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
NJM78M05A						
Output Voltage	Vo	$V_{IN} = 10V, I_0 = 350mA$	4.8	5.0	5.2	v
Line Regulation	ΔVo-Vin	$V_{IN}=7\sim25V$, $I_{O}=200mA$	l —	3	50	mV
Load Regulation	ΔV_{O} - l_{O}	$V_{1N}=10V$, $I_0=5\sim500$ mA	l —	5	50	mV
Quiescent Current	lQ	$V_{IN}=10V$, $I_0=0$ mA		4	6	mA
Average Temperature Coefficient						
of Output Voltage	$\Delta V_{O}/\Delta T$	$V_{IN}=10V, I_0=5mA$	—	-1		mV/℃
Ripple Rejection	RR	$V_{IN}=10V$, $I_{O}=350mA$, $e_{in}=IV_{P-P}$, $f=120Hz$	60	80		dB
Output Noise Voltage	V _{NO}	$V_{IN}=10V$, BW=10Hz~100kHz, $I_{O}=350$ mA	-	60	_	μV

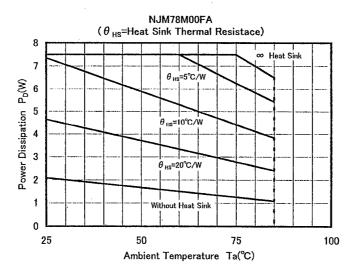
■ ELECTRICAL CHARACTERISTICS $(C_{IN}=0.33 \ \mu F, C_0=0.1 \ \mu F, T_j=25 \ C)$ Measurement is to be conducted in pulse testing.

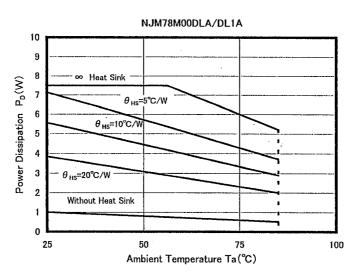
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
NJM78M06A	· · · · · ·					
Output Voltage	l v _o	$V_{IN}=11V, I_{O}=350mA$	5.75	6.0	6.25	V
Line Regulation	$\Delta V_{O}-V_{IN}$	$V_{IN}=8\sim25V, I_{O}=200mA$	_	5	60	mV
Load Regulation	ΔV _O -l _O	V _{IN} =11V, I _O =5~500mA	_	5	60	mV
Quiescent Current	Io	$V_{IN}=11V, I_{O}=0mA$	— ·	4	6	mΑ
Average Temperature Coefficient	,					
of Output Voltage	$\Delta V_{O}/\Delta T$	$V_{IN} = 11V, I_O = 5mA$	_	1	<u> </u>	mV/℃
Ripple Rejection	RR	$V_{IN}=11V, I_{O}=350mA, e_{in}=1V_{P-P}, f=120Hz$	59	75		dB
Output Noise Voltage	V _{NO}	V _{IN} =11V, BW=10Hz~100kHz, I _O =350mA	-	70	_	μV
NJM78M08A						
Output Voltage	Vo	V _{IN} =14V, I _O =350mA	7.7	8.0	8.3	v
Line Regulation	$\Delta V_{O}-V_{IN}$	$V_{1N}=10.5\sim25V$, $I_{O}=200mA$	-	6	60	mV
Load Regulation	ΔV_{O} -IO	V _{IN} =14V, I _O =5~500mA	_	8	80	mV
Quiescent Current	IQ	$V_{IN} = 14V, I_0 = 0mA$	-	4	6	mA
Average Temperature Coefficient	1					!
of Output Voltage	$\Delta V_{O}/\Delta T$	$V_{1N} = 14V, I_0 = 5mA$		-1	_	mV/℃
Ripple Rejection	RR	$V_{IN}=14V$, $I_{O}=350mA$, $e_{in}=IV_{P-P}$, $f=120Hz$	56	75	l —	dB
Output Noise Voltage	V _{NO}	$V_{IN}=14V$, BW=10Hz~100kHz, $I_{O}=350$ mA	_	80	-	μV
NJM78M09A						
Output Voltage	V _o	$V_{IN}=15V$, $I_{O}=350mA$	8.65	9.0	9.35	v
Line Regulation	ΔV _O -V _{IN}	$V_{1N}=11.5\sim25V$, $I_{O}=200mA$	_	6	60	mV
Load Regulation	Δ٧0-Ιο	$V_{IN}=15V$, $I_{O}=5\sim500$ mA	<u> </u>	8	90	mV
Quiescent Current	IQ	$V_{IN}=15V, I_{O}=0mA$	_	4.1	6	mΑ
Average Temperature Coefficient						
of Output Voltage	$\Delta V_{O}/\Delta T$	$V_{IN} = 15V, I_0 = 5mA$	—	-1	-	mV/℃
Ripple Rejection	RR	$V_{IN}=15V$, $I_{O}=350mA$, $e_{in}=IV_{P-P}$, $f=120Hz$	56	70	—	dB
Output Noise Voltage	V _{NO}	$V_{IN}=15V$, BW=10Hz~100kHz, $I_{O}=350mA$		90	-	μ٧
NJM78M12A					İ	
Output Voltage	V _o	$V_{IN} = 19V, I_0 = 350 \text{mA}$	11.5	12.0	12.5	V
Line Regulation	ΔV _O -V _{IN}	$V_{IN} = 14.5 \sim 30 \text{V}, l_O = 200 \text{mA}$	_	8	60	mV
Load Regulation	ΔV_{O} -IO	$V_{IN} = 19V, I_0 = 5 \sim 500 \text{mA}$		8	120	mV
Quiescent Current	l _Q	$V_{IN} = 19V, I_0 = 0mA$	_	4.1	6	mA
Average Temperature Coefficient	,				1	
of Output Voltage	$\Delta V_{O}/\Delta T$	$V_{IN} = 19V, I_O = 5mA$	_	-1	_	mV/℃
Ripple Rejection	RR	$V_{IN}=19V$, $I_0=350$ mA, $e_{in}=IV_{P-P}$, $f=120$ Hz	55	70		dB
Output Noise Voltage	V _{NO}	$V_{IN}=19V$, BW=10Hz~100kHz, $I_{O}=350$ mA		100		μV


■ ELECTRICAL CHARACTERISTICS ($C_{IN}=0.33 \mu F$, $C_{O}=0.1 \mu F$. $T_{J}=25 ^{\circ}C$) Measurement is to be conducted in pulse testing.

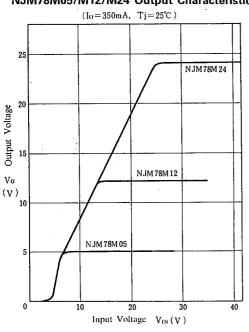
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
NJM78M15A						
Output Voltage	Vo	$V_{IN}=23V$, $I_{O}=350mA$	14.4	15.0	15.6	v
Line Regulation	ΔV _O -V _{IN}	$V_{IN}=17.5\sim30V, I_{O}=200mA$	_	10	60	mV
Load Regulation	Δ۷ο-Ιο	$V_{1N}=23V$, $I_0=5\sim500$ mA	_	10	150	mV
Quiescent Current	IQ	V _{IN} =23V, I _O =0mA	_	4.1	6	mA
Average Temperature Coefficient				1		
of Output Voltage	ΔVo/ΔΤ	$V_{IN} = 25V, I_O = 5mA$		-1	l —	mV/℃
Ripple Rejection	RR	$V_{1N}=23V$, $I_{O}=350mA$, $e_{in}=IV_{P-P}$, $f=120Hz$	54	70	_	dВ
Output Noise Voltage	V _{NO}	$V_{IN}=23V$, BW=10Hz~100kHz, $I_{O}=350mA$	-	120	-	μV
NJM78M18A	•					
Output Voltage	Vo	V _{IN} =27V, I _O =350mA	17.3	18.0	18.7	v
Line Regulation	ΔV _O -V _{IN}	$V_{1N}=21\sim33V, I_{O}=200mA$	_	10	60	mV
Load Regulation	ΔV _O -I _O	$V_{1N}=27V$, $I_0=5\sim500$ mA		15	180	mV
Quiescent Current	Io	$V_{1N}=27V, I_{0}=0mA$	_	4.2	6	mA
Average Temperature Coefficient	`				_	
of Output Voltage	$\Delta V_{O}/\Delta T$	$V_{IN} = 27V, I_O = 5mA$	_	-1.1	_	mV/°C
Ripple Rejection	RR	$V_{IN}=27V$, $I_{O}=350mA$, $e_{in}=IV_{P-P}$, $f=120Hz$	53	65		dB
Output Noise Voltage	V _{NO}	V_{1N} =27V, BW=10Hz~100kHz, I_0 =350mA	_	140	-	μV
NJM78M2OA						
Output Voltage	l vo	$V_{IN}=29V, I_{O}=350mA$	19.2	20.0	20.8	l v
Line Regulation	ΔV _O -V _{IN}	$V_{1N}=23\sim35V, I_{O}=200mA$	_	10	60	mV.
Load Regulation	ΔV _O -l _O	$V_{1N}=29V, l_0=5\sim 500 mA$		20	200	mV
Quiescent Current	IQ	$V_{IN}=29V, I_{O}=0mA$	_	4	6	mA
Average Temperature Coefficient						
of Output Voltage	$\Delta V_{O}/\Delta T$	$V_{IN} = 29V, I_O = 5mA$	—	-1.1		mV/℃
Ripple Rejection	RR	$V_{1N}=29V$, $I_0=350mA$, $e_{in}=IV_{P-P}$, $f=120Hz$	53	65	-	dB
Output Noise Voltage	V _{NO}	$V_{IN}=29V$, BW=10Hz~100kHz, $I_{O}=350$ mA		150		μ٧
NJM78M24A						
Output Voltage	Vo	V _{IN} =33V, I _O =350mA	23.0	24.0	25.0	l v
Line Regulation	ΔV _O -V _{IN}	$V_{IN}=27\sim38V, I_{O}=200mA$		10	60	mV
Load Regulation	ΔV _O -I _O	V_{IN} =33V, I_{O} =5~500mA	—	20	240	mV
Quiescent Current	IQ	$V_{IN}=33V$, $I_O=0mA$	·	4.2	6	mA
Average Temperature Coefficient		·				1
of Output Voltage	$\Delta V_{O}/\Delta T$	$V_{IN} = 33V, I_O = 5mA$	_	-1.2		mV/℃
Ripple Rejection	RR	$V_{IN}=33V$, $I_O=350mA$, $e_{in}=IV_{P-P}$, $f=120Hz$	50	60	_	dB
Output Noise Voltage	V _{NO}	$V_{1N}=33V$, BW=10Hz~100kHz, $I_0=350$ mA		160	_	μV
	1		1	1	1	1 /

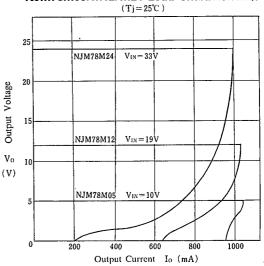
■ TEST CIRCUIT


- Output Voltage, Line Regulation, Load Regulation, Quiescent Current, Average Temperature Coefficient of Output Voltage, Output Noise Voltage.
 - - · Measurement is to be conducted
 - $I_0 = I_{IN} I_0$ in pulse testing

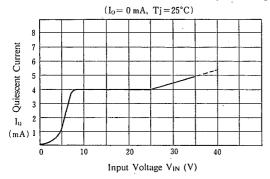

2. Ripple Rejection

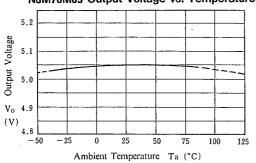
$$RR = 20\log_{10}\left(\frac{e_{in}}{e_{o}}\right) (dB)$$

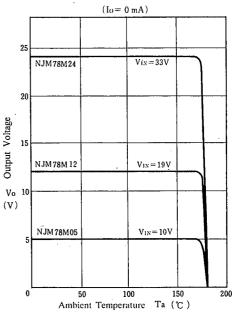

■ POWER DISSIPATION VS. AMBIENT TEMPERATURE

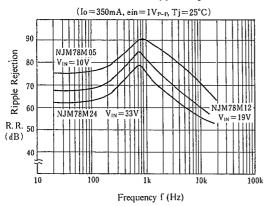


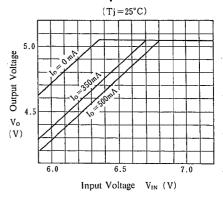
■ TYPICAL CHARACTERISTICS


NJM78M05/M12/M24 Output Characteristics

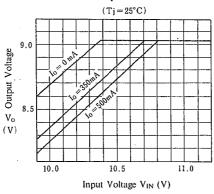

NJM78M05/M12/M24 Load Characteristics

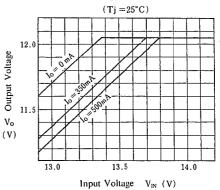

NJM78M05 Quiescent Current vs. Input Voltage

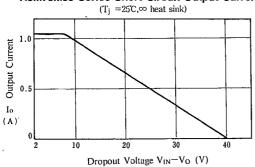

NJM78M05/M12/M24 Thermal Shutdown Characteristics


6

TYPICAL CHARACTERISTICS


NJM78M05/12/24 Ripple Rejection


NJM78M05 Dropout Characteristics


NJM78M09 Dropout Characteristics

NJM78M12 Dropout Characteristics

NJM78M00 Series Short Circuit Output Current

NJM78M00

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.