8088

8-Bit Microprocessor CPU iAPX86 Family

FINAL

DISTINCTIVE CHARACTERISTICS

- 8-bit data bus, 16-bit internal architecture
- Directly addresses 1 Mbyte of memory
- Software compatible with 8086 CPU
- Byte, word, and block operations
- 24 operand addressing modes
- Powerful instruction set
- Efficient high level language implementation
- Three speed options: 5 MHz 8088
$8 \mathrm{MHz} 8088-2$
$10 \mathrm{MHz} \mathrm{8088-1}$

GENERAL DESCRIPTION

The 8088 CPU is an 8-bit processor designed around the 8086 internal structure. Most functions of the 8088 are identical to the equivalent 8086 functions. The pinout is slightly different. The 8088 handies the external bus the same way the 8086 does, but it handles only 8 bits at a time. Sixteen-bit words are fetched or written in two
consecutive bus cycles. Both processors will appear identical to the software engineer, with the exception of execution time.

The 8088 is made with N -channel silicon gate technology and is packaged in a 40 -pin Plastic dip, CERDIP or Plastic Leaded Chip Carrier.

BLOCK DIAGRAM

CONNECTION DIAGRAMS

Top View

Note: Pin 1 is marked for orientation.

ORDERING INFORMATION

Commodity Products

AMD commodity products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of: a. Temperature Range
b. Package Type
c. Device Number
d. Speed Option
e. Optional Processing

Valtd Combinations	
P. N	8088
	$8088-2$
	$8088-1$
ID	$8088 \mathrm{~B}, 8088$
	$8086-2 B, 8088-2$
	$8088 B$
	$8088-28$

Valid Comblnations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released valid combinations, and to obtain additional data on AMD's standard military grade products.

MILITARY ORDERING INFORMATION APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: a. Device Number
b. Speed Option (if applicable)
c. Device Class
d. Package Type
e. Lead Finish

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups
$1,2,3,7,8,9,10,11$.

PIN DESCRIPTION

The following pin function descriptions are for 8088 systems in either minimum or maximum mode. The "local bus" in these descriptions is the direct multiplexed bus interface connection to the 8088 (without regard to additional bus buffers).

Pin No.*	Name	1/0	Deacription
9-16	$\mathrm{AD}_{7}-\mathrm{AD}_{0}$	170	Address Data Bus. These lines constitute the time multiplexed memory/10 address (T_{1}) and data $\left(T_{2}, T_{3}, T_{W}\right.$ and T_{4}) bus. These lines are active HIGH and float to three-state OFF during interrupt acknowiedge and local bus "hold acknowledge.'
39. 2-8	$A_{15}-A_{8}$	0	Address Bus. These lines provide address bits 8 through 15 for the entire bus cycle $\left(T_{1}-T_{4}\right)$. These lines do not have to be latched by ALE to remain valid. $\mathrm{A}_{15}-\mathrm{A}_{8}$ are active HIGH and float to 3 -state OFF during interrupt acknowledge and local bus "hold acknowledge."
35-38	$\begin{aligned} & A_{19} / S_{6} \\ & A_{18} / S_{5} \\ & A_{17} / S_{4} \\ & A_{16} / S_{3} \end{aligned}$	0	Address/Status. During T_{1}, these are the four most significant address lines for memory operations. During $1 / \mathrm{O}$ operations, these lines are LOW. During memory and I/O operations, status information is available on these lines during $T_{2}, T_{3}, T w$ and T_{4}, S_{6} is always LOW. The status of the interrupt enable flat bit $\left(S_{5}\right)$ is updated at the beginning of each clock cycle. S_{4} and S_{3} are encoded as shown. This information indicates which segment register is presently being used for data accessing. These lines float to three-state OFF during local bus "hold acknowledge."
32	RD	0	Read. Read strobe indicates that the processor is performing a memory or 1/O read cycle, depending on the state of the IO/M pin or S_{2}. This signal is used to read devices which reside on the 8088 local bus. RD is active LOW during $\mathrm{T}_{2}, \mathrm{~T}_{3}$ and T_{w} of any read cycle and is guaranteed to remain HIGH in T_{2} until the 8088 local bus has floated. This stgnal floats to 3 -state OFF in "hold acknowledge."
22	READY	1	READY. The acknowledgment from the addressed memory or l/O device that it will complete the data transfer. The RDY signal from memory or 1/O is synchronized by the 8284 clock generator to form READY. This signal is active HIGH. The 8088 READY input is not synchronized. Correct operation is not guaranteed if the set-up and hold times are not met.
18	INTR	1	Interrupt Pequest. A level-triggered input which is sampled during the last clock cycle of each instruction to determine if the processor should enter into an interrupt acknowledge operation. A subroutine is vectored to via an interrupt vector lookup table located in system memory. It can be internally masked by software resetting the interrupt enable bit. INTR is internally synchronized. This signal is active HIGH.
23	TEST	1	TEST. Input is examined by the "wait for test" instruction. If the TEST input is LOW, execution continues; otherwise, the processor waits in an "Idie" state. This input is synchronized internally during each clock cycle on the leading edge of CLK.
17	NMI	1	Non-Maskable Interrupt. An edge-triggered input which causes a type 2 interrupt. A subroutine is vectored to via an interrupt vector lookup table located in system memory. NMI is not maskable internally by software. A transition from a LOW to HIGH initiates the interrupt at the end of the current instruction. This Input is internally synchronized.
21	RESET	1	RESET. Causes the processor to immediately terminate its present activity. The signal must be active HIGH for at least four clock cycles. It restarts execution, as described in the instruction set description, when RESET returns LOW. RESET is internally synchronized.
19	CLK	1	Clock. Provides the basic timing for the processor and bus controller. It is asymmetric with a 33% duty cycle to provide optimized internal timing.
40	$V_{C C}$		Vcc. The + $5 \mathrm{~V} \pm 10 \%$ power supply pin.
1,20	GND		GND. The ground pins.
33	MIN/MX	1	Minimum/Maximum. Indicates what mode the processor is to operate in. The two modes are discussed in the following sections.
28	10/M	0	Status Line. An inverted maximum mode \bar{S}_{2}. It is used to distinguish a memory access from an $1 / O$ access. $10 / \bar{M}$ becomes valid in the T_{4} preceding a bus cycle and remains valid until the final T_{4} of the cycle ($/ / O=H I G H$, $M=$ LOW). $10 / \bar{M}$ floats to three-state OFF in tocal bus "hold acknowledge.
29	Wh	0	Write. Strobe indicates that the processor is performing a write memory or write I/O cycle, depending on the state of the $10 / \mathrm{M}$ signal. WR is active for $\mathrm{T}_{2}, \mathrm{~T}_{3}$ and T_{w} of any write cycle. It is active LOW and fioats to 3 -state OFF in local bus "hold acknowledge.'
24	INTA	\bigcirc	INTA. Used as a read strobe for interrupt acknowledge cycles. It is active LOW during $\mathrm{T}_{2}, \mathrm{~T}_{3}$ and $\mathrm{T} W$ of each interrupt acknowledge cycle.
25	ALE	0	Address Latch Enable. Provided by the processor to latch the address into 8282/8283 address latch. It is a HIGH pulse active during clock low of T_{1} of any bus cycle. Note that ALE is never floated.
27	DT/ $\overline{\text { I }}$	0	Data Transmit/Receive. Needed in a minimum system that desires to use an 8286/8287 data bus transceiver. It is used to control the direction of data flow through the transceiver. Logically $D T / \overline{\mathcal{F}}$ is equivalent to \mathbf{S}_{1} in the maximum mode, and its timing is the same as for $10 / \bar{M}(T=H I G H, R=$ LOW.) This signal floats to three-state OFF in local bus "hold acknowledge."
26	DEN	\bigcirc	Data Enable. Provided as an output enable for the $8286 / 8287$ in a minimum system that uses the transceiver. $\overline{\text { DEN }}$ is active LOW during each memory and I/O access and for INTA cycles. For a read or INTA cycle, it is active from the middie of T_{2} until the middle of T_{4}; while for a write cycle, it is active from the beginning of T_{2} until the middle of T4. DEN floats to 3 -state OFF during local bus "hold acknowledge.

${ }^{*}$ Pin numbers correspond to DIPs only.

*Pin numbers correspond to DIPs only.

PIN DESCRIPTION (continued)

Pin No.*	Name	1/0	Description		
24, 25	$\mathrm{QS}_{1}, \mathrm{OS}_{0}$	\bigcirc	Queue Status. Provides status to allow external tracking of the internal 8088 instruction queue. The queue status is valid during the CLK cycle after which the queue operation is performed.		
			OS_{1}	$\mathbf{O S}_{0}$	Characteristics
			0 (LOW)	0	No Operation
			0	1	First Byte of Opcode from Queue
			1 (HIGH)	0	Empty the Queue
			1	1	Subsequent Byte from Queue
34	-	0	Pin 34 is always HIGH in the maximum mode.		

*Pin numbers correspond to DIPs only.

DETAILED DESCRIPTION

The 8088 Compared to the 8086

- The queue length is 4 bytes in the 8088; whereas, the 8086 queue contains 6 bytes, or three words. The queue was shortened to prevent overuse of the bus by the BIU when prefetching instructions. This was required because of the additional time necessary to fetch instructions 8 bits at a time.
- To further optimize the queue, the prefetching algorithm was changed. The 8088 BIU will fetch a new instruction to load into the queue each time there is a 1 byte hole (space available) in the queue. The 8086 waits until a 2-byte space is available.
- The internal execution time of the instruction set is affected by the 8 -bit interface. All 16 -bit fetches and writes from/to memory take an adcitional four clock cycles. The CPU is also limited by the spead of instruction fetches. This latter problem only occurs when a series of simple operations occurs. When the more sophisticated instructions of the 8088 are being used, the queue has time to fill and the execution proceeds as fast as the execution unit will allow.
The 8088 and 8086 are completely software compatible by virtue of their identical execution units. Software that is system dependent may not be completely transferable, but software that is not system dependent will operate equally as well on an 8088 or an 8086.
The hardware interface of the 8088 contains the major differences between the two CPUs. The pin assignments are nearly identical, however, with the following functional changes:
- $A_{8}-A_{15}$ - These pins are only address outputs on the 8088. These address lines are latched internally and remain valid throughout a bus cycle in a manner similar to the 8085 upper address lines.
- BHE has no meaning on the 8088 and has been eliminated.
- SSO provides the SO status information in the minimum mode. This output occurs on pin 34 in minimum mode only. DT/ $\overline{\mathrm{R}}, 1 \mathrm{O} / \overline{\mathrm{M}}$, and $\overline{\mathrm{SSO}}$ provide the complete bus status in minimum mode.
- $10 / \bar{M}$ has been inverted to be compatible with the MCS-85 bus structure.
- ALE is delayed by one clock cycle in the minimum mode when entering HALT, to allow the status to be latched with ALE.

1/O Addressing

in the 8088, I/O operations can address up to a maximum of $64 \mathrm{~K} 1 / O$ registers. The $1 / O$ address appears in the same format as the memory address on bus lines A_{15} - A_{0}. The
address lines $A_{19}-A_{16}$ are zero in $1 / O$ operations. The variable I/O instructions, which use register DX as a pointer, have full address capability, while the direct $1 / O$ instructions directly address one or two of the 256 //O byte locations in page 0 of the I/O address space. 1/O ports are addressed in the same manner as memory locations.
Designers familiar with the 8085 or upgrading an 8085 design should note that the 8085 addresses I/O with an 8-bit address on both halves of the 16 -bit address bus. The 8088 uses a full 16 -bit address of its lower 16 address lines.

Bus Operation

The 8088 address/data bus is broken into three parts - the lower eight address/data bits ($A D_{0}-A D_{7}$), the middle eight address bits $\left(A_{8}-A_{15}\right)$ and the upper four address bits ($A_{16}-A_{19}$). The address/data bits and the highest four address bits are time multiplexed. This technique provides the most efficient use of pins on the processor, permitting the use of a standard 40 lead package. The middle eight address bits are not multiplexed; i.e., they remain valid throughout each bus cycle. In addition, the bus can be demultiplexed at the processor with a single address latch if a standard, nonmultiplexed bus is desired for the system.

Each processor bus cycie consists of at least four CLK cycles. These are referred to as T1, T2, T3 and T4. The address is emitted from the processor during T1 and data transfer occurs on the bus during T3 and T4. T2 is used primarily for changing the direction of the bus during read operations. In the event that a "NOT READY" indication is given by the addressed device, '"wait' states (Tw) are inserted between T3 and T4. Each inserted 'wait' state is of the same duration as a CLK cycle. Periods can occur between 8088 driven bus cycles. These are referred to as "idle" states (Ti) or inactive CLK cycles. The processor uses these cycles for internal housekeeping.

During T1 of any bus cycle, the ALE (address tatch enable), signal is emitted (by either the processor or the 8288 bus controller, depending on the $\mathrm{MN} / \overline{\mathrm{MX}}$ strap). At the trailing edge of this pulse, a valid address and certain status information for the cycle may be latched.
Status bits $\overline{\mathbf{S O}}, \overline{\mathrm{S} 1}$, and $\overline{\mathrm{S} 2}$ are used by the bus controller, in maximum mode, to identify the type of bus transaction according to the following table:

$\overline{\mathbf{S}}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{1}}$	$\overline{\mathbf{S}}_{\mathbf{0}}$	Characteristics
0 (LOW)	0	0	Interrupt Acknowledge
0	0	1	Read I/O
0	1	0	Write I/O
0	1	1	Halt
$\mathbf{1}$ (HIGH)	0	0	Instruction Fetch
$\mathbf{1}$	0	1	Read Data from Memory
1	1	0	Write Data to Memory
1	1	1	Passive (no bus cycle)

Status bits S3 through S6 are multiplexad with high order address bits and are therefore valid during T 2 through T 4 . S3 and S4 indicate which segment register was used for this bus cycle in forming the address according to the following table:

$\mathbf{S}_{\mathbf{4}}$	\mathbf{S}_{3}	Characteristics
0 (LOW)	0	Alternate Data (extra segment)
0	1	Stack
1 (HIGH)	0	Code or None
1	1	Data

S5 is a reflection of the PSW interrupt enable bit. S6 is always equal to 0 .

External Interface

Processor Reset and Initialization

Processor initialization or start up is accomplished with activation (HIGH) of the RESET pin. The 8088 RESET is required to be HIGH for greater than four clock cycles. The 8088 will terminate operations on the high-going edge of RESET and will remain dormant as long as RESET is HIGH. The low-going transition of RESET triggers an internal reset sequence for approximately 7 clock cycles. After this interval the 8088 operates normally, beginning with the instruction in absolute location FFFFFOH (see Figure 3). The RESET input is internally synchronized to the processor clock. At initialization, the HIGH to LOW transition of RESET must occur no sooner than $50 \mu \mathrm{~s}$ after power up, to allow complete initialization of the 8088.
If INTR is asserted sooner than nine clock cycles after the end of RESET, the processor may execute one instruction before responding to the interrupt.
All three-state outputs float to three-state OFF during RESET. Status is active in the idle state for the first clock after RESET becomes active and then floats to three-state OFF.

Interrupt Operations

Interrupt operations fall into two classes: software or hardware initiated. The software initiated interrupts and software aspects of hardware interrupts are specified in the instruction set description in the IAPX 88 book or the IAPX 86, 88 User's Manual. Hardware interrupts can be classified as nonmaskable or maskable.
Interrupts result in a transfer of control to a new program location. A 256 element table containing address pointers to the interrupt service program locations resides in absolute locations 0 through 3FFH (see Figure 3), which are reserved for this purpose. Each element in the table is 4 bytes in size and corresponds to an interrupt "type." An interrupting device supplies an 8-bit type number, during the interrupt acknowledge sequence, which is used to vector through the appropriate element to the new interrupt service program location.

Non-Maskable Interrupt (NMI)

The processor provides a single non-maskable interrupt (NMI) pin which has higher priority than the maskable interrupt request (INTR) pin. A typical use would be to activate a power failure routine. The NMI is edge-triggered on a LOW to HIGH transition. The activation of this pin causes a type 2 interrupt.
NMI is required to have a duration in the HIGH state of greater than two clock cycles but is not required to be synchronized to the clock. Any higher going transition of NMI is latched on-chip and will be serviced at the end of the current instruction or between whole moves (2 bytes in the case of word moves) of a block type instruction. Worst case response to NMI would be for multiply, divide and variable shift instructions. There is no
specification on the occurrence of the low-going edge; it may occur before, during or after the servicing of NMI. Another high-going edge triggers another response if it occurs after the start of the NMI procedure. The signal must be free of logical spikes in general and be free of bounces on the low-going edge to avoid triggering extraneous responses.

Maskable Interrupt (INTR)

The 8088 provides a single interrupt request input (INTR) which can be masked internally by software with the resetting of the interrupt enable (IF) flag bit. The interrupt request signal is level triggered. It is internally synchronized during each clock cycle on the high-going edge of CLK. To be responded to, INTR must be present (HIGH) during the clock period preceding the end of the current instruction or the end of a whole move for a block type instruction. During interrupt response sequence, further interrupts are disabled. The enable bit is reset as part of the response to any interrupt (INTR, NMI, software interrupt, or single step), although the FLAGS register which is automatically pushed onto the stack reflects the state of the processor prior to the interrupt. Until the old FLAGS register is restored, the enable bit will be zero unless specifically set by an instruction.
During the response sequence (see Figure 1), the processor executes two successive (back to back) interrupt acknowledge cycles. The 8088 emits the LOCK signal (maximum mode only) from T2 of the first bus cycle until T2 of the second. A local bus 'hold' request will not be honored until the end of the second bus cycle. In the second bus cycle, a byte is fetched from the external interrupt system (e.g., 8259A PIC) which identifies the source (type) of the interrupt. This byte is multiplied by four and used as a pointer into the interrupt vector lookup table. An INTR signal left HIGH will be continually responded to within the limitations of the enable bit and sample period. The interrupt return instruction includes a flags pop which returns the status of the original interrupt enable bit when it restores the flags.

HALT

When a software HALT instruction is executed, the processor indicates that it is entering the HALT state in one of two ways, depending upon which mode is strapped. In minimum mode, the processor issues ALE, delayed by one clock cycle, to aliow the system to latch the halt status. Halt status is available on $1 O / \bar{M}, \mathrm{DT} / \overline{\mathrm{A}}$ and $\overline{\mathrm{SSO}}$. In maximum mode, the processor issues appropriate HALT status on $\overline{\mathrm{S} 2, \overline{S 1}}$ and $\overline{\mathrm{S}}$, and the 8288 bus controller issues one ALE. The 8088 will not leave the HALT state when a local bus hold is entered while in HALT. In this case, the processor reissues the HALT indicator at the end of the local bus hold. An interrupt request or RESET will force the 8088 out of the HALT state.

Read/Modify/Write (Semaphore) Operations via LOCK

The LOCK status information is provided by the processor when consecutive bus cycles are required during the execution of an instruction. This allows the processor to perform read/modify/write operations on memory (via the "exchange register with memory' instruction), without another system bus master receiving intervening memory cycles. This is useful in multiprocessor system configurations to accomplish 'test and set lock' operations. The LOCK signal is activated (LOW) in the clock cycle following decoding of the LOCK prefix instruction. It is deactivated at the end of the last bus cycle of the instruction following the LOCK prefix. While LOCK is active, a request on a $\overline{R Q} / \overline{G T}$ pin will be recorded, and then honored at the end of the LOCK.

Figure 1. Interrupt Acknowledge Sequence

External Synchronization via TEST

As an alternative to interrupts, the 8088 provides a single software-testable input pin (TEST). This input is utilized by executing a WAIT instruction. The single WAIT instruction is repeatedly executed until the TEST input goes active (LOW). The execution of WAIT does not consume bus cycles once the queue is full.

If a local bus request occurs during WAIT execution, the 8088 three-states all output drivers. If interrupts are enabled, the 8088 will recognize interrupts and process them. The WAIT instruction is then refetched, and reexecuted.

Basic System Timing

In minimum mode, the $M N / \overline{M X}$ pin is strapped to $V_{C C}$ and the processor emits bus control signals compatible with the 8085 bus structure. In maximum mode, the MN/ $\overline{M X}$ pin is strapped to GND, and the processor emits coded status information, which the 8288 bus controller uses to generate MULTIBUS compatible bus control signals.

System Timing - Minimum System

The read cycle begins in T1 with the assertion of the address latch enable (ALE) signal. The trailing (low going) edge of this signal is used to latch the address information, which is valid on the address/data bus (ADO-AD7) at this time, into the 8282/8283 latch. Address lines A8 through A15 do not need to be latched because they remain valid throughout the bus cycle. From T1 to T 4 the $1 \mathrm{O} / \overline{\mathrm{M}}$ signal indicates a memory or 1/O operation. At T2 the address is removed from the address/data bus, and the bus goes to a high impedance state. The read control signal is also asserted at T2. The read (RD) signal causes the addressed device to enable its data bus drivers to the local bus. Some time later, valid data will be available on the bus and the addressed device will drive the READY line HIGH. When the processor returns the read signal to a HIGH level, the addressed device will again three-state its bus drivers. If a transceiver ($8286 / 8287$) is required to buffer the 8088 local bus, signals $\mathrm{DT} / \overline{\mathrm{R}}$ and $\overline{\mathrm{DEN}}$ are provided by the 8088.

A write cycle also begins with the assertion of ALE and the emission of the address. The $10 / \bar{M}$ signal is again asserted to indicate a memory or I/O write operation. In T2, immediately following the address emission, the processor emits the data to be written into the addressed location. This data remains valid until at least the middle of T4. During T2, T3 and Tw, the processor asserts the write control signal. The write (WR) signal becomes active at the beginning of T2, as opposed to the read, which is delayed somewhat into T2 to provide time for the bus to float.

The basic difference between the interrupt acknowledge cycle and a read cycie is that the interrupt acknowledge (INTA) signal is asserted in place of the read (RD) signal and the address bus is floated (see Figure 1). In the second of two successive INTA cycles, a byte of information is read from the data bus, as supplied by the interrupt system logic (i.e., 8259A priority interrupt controller). This byte identifies the source (type) of the interrupt. It is multiplied by four and used as a pointer into the interrupt vector lookup table, as described earlier.

Bus Timing - Medium Complexity Systems

For medium complexity systems, the MN/仪 pin is connected to GND and the 8288 bus controller is added to the system, as well as an 8282/8283 latch for latching the system address, and an 8286/8287 transceiver to allow for bus loading greater than the 8088 is capable of handling. Signals ALE, DEN and DT/R are generated by the 8288 instead of the processor in this configuration, although their timing remains relatively the same. The 8088 status outputs ($\overline{\mathrm{S} 2, \overline{\mathrm{~S}} 1 \text { and } \mathrm{S} 0 \text {) provide type }}$ of cycle information and become 8288 inputs. This bus cycle information specifies read (code, data or 1/O), write (data or I/O), interrupt acknowledge, or software halt. The 8288 thus issues control signals specitying memory read or write, I/O read or write or interrupt acknowledge. The 8288 provides two types of write strobes, normal and advanced, to be applied as required. The normal write strobes have data valid at the leading edge of write. The advanced write strobes have the same timing as read strobes, and hence, data is not valid at the leading edge of write. The 8286/8287 transceiver receives
the usual T and $\overline{O E}$ inputs from the 8288's DT/ \bar{F} and DEN outputs.
The pointer into the interrupt vector table, which is passed during the second INTA cycle, can derive from an 8259A located on either the local bus or the system bus. If the master 8289A priority interrupt controlier is positioned on the local bus, a TTL gate is required to disable the 8286/8287 transceiver when reading from the master 8259A during the interrupt acknowiedge sequence and software 'poll."

Memory Organization

The processor provides a 20 -bit address to memory which locates the byte being referenced. The memory is organized as a linear array of up to 1 million bytes, addressed as $00000(\mathrm{H})$ to $\operatorname{FFFFF}(\mathrm{H})$. The memory is logically divided into code, data, extra data and stack segments of up to 64 K bytes each, with each segment falling on 16-byte boundaries (see Figure 2).
All memory references are made relative to base addresses contained in high speed segment registers. The segment types were chosen based on the addressing needs of programs. The segment register to be selected is automatically chosen according to the ruies of the following table. All information in one segment type share the same logical attributes (e.g., code or data). By structuring memory into relocatable areas of similar characteristics and by automatically selecting segment registers, programs are shorter, faster and more structured.

DF004530
Figure 2. Memory Organization

Word (16-bit) operands can be located on even or odd address boundaries. For address and data operands, the least significant byte of the word is stored in the lower valued address location and the most significant byte in the next higher address location. The BIU will automatically execute two fetch or write cycles for 16 -bit operands.

Certain locations in memory are reserved for specific CPU operations (see Figure 3). Locations from addresses FFFFOH through FFFFFH are reserved for operations including a jump to the initial system initialization routine. Following RESET, the CPU will always begin execution at location FFFFOH where the jump must be located. Locations 00000 H through 003FFH are reserved for interrupt operations. Four-byte pointers consisting of a 16 -bit segment address and a 16 -bit offset address direct program flow to one of the 256 possible interrupt service routines. The pointer elements are assumed to have been stored at their respective places in reserved memory prior to the occurrence of interrupts.

Minimum and Maximum Modes

The requirements for supporting minimum and maximum 8088 systems are sufficiently different that they cannot be done efficiently with 40 uniquely defined pins. Consequently, the 8088 is equipped with a strap pin ($\mathrm{MN} / \overline{\mathrm{MX} \text {) which defines the }}$ system configuration. The definition of a certain subset of the pins changes, dependent on the condition of the strap pin. When the MN/MX pin is strapped to GND, the 8088 defines pins 24 through 31 and 34 in maximum mode. When the MN/ $\overline{M X}$ pin is strapped to $V_{C C}$, the 8088 generates bus control signals itself on pins 24 through 31 and 34 .

Figure 3. Reserved Memory Locations

Memory Reference Need	Segment Register Used	Segment Selection Rule
Instructions	CODE (CS)	Automatic with all instruction prefetch.
Stack	STACK (SS)	All stack pushes and pops. Memory references relative to BP base reg- ister except data references.
Local Data	DATA (DS)	Data references when: relative to stack, destination of string operation, or explicitly overridden.
External (Global) Data	EXTRA (ES)	Destination of string operations: Explicitly selected using a segment override.

The minimum mode 8088 can be used with either a multiplexed or demultiplexed bus. The multiplexed bus configuration is compatible with the MCS-85 ${ }^{\text {TM }}$ multiplexed bus peripherals $(8155,8156,8355,8755 A$, and 8185$)$. This configuration (see Figure 4) provides the user with a minimum chip count system. This architecture provides the 8088 processing power in a highly integrated form.

The demultiplexed mode requires one latch (for 64K addressability) or two latches (for a full megabyte of addressing). A third latch can be used for buffering if the address bus loading requires it. An 8286 or 8287 transceiver can also be used if data bus butfering is required (see Figure 5). The 8088 provides $\overline{D E N}$ and DT/R to control the transceiver, and ALE to
latch the addresses. This configuration of the minimum mode provides the standard demultiplexed bus structure with heavy bus buffering and relaxed bus timing requirements.

The maximum mode employs the 8288 bus controller (see Figure 6). The 8288 decodes status lines $\overline{\mathbf{S 0}}, \overline{\mathbf{S 1}}$ and $\overline{\mathbf{S} 2}$ and provides the system with all bus control signals. Moving the bus control to the 8288 provides better source and sink current capability to the control lines and frees the 8088 pins for extended large system features. Hardware lock, queue status and two request/grant interfaces are provided by the 8088 in maximum mode. These features allow co-processors in local bus and remote bus configurations.

AF003451
Figure 4. Multiplexed Bus Configuration

Figure 5. Demultiplexed Bus Configuration

Figure 6. Fully Buffered System Using Bus Controller

Figure 7. Basic System Timing

Figure 8. Medium Complexity System Timing

ABSOLUTE MAXIMUM RATINGS

Storage Temperature
-65 to $+150^{\circ} \mathrm{C}$
Voltage on any Pin
with Respect to Ground-1.0 to +7.0 V
Power Dissipation ..2.5 W
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device tailure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices	
8088 .. 5 5 V $\pm 10 \%$	
8088-1, 8088-2 $5 \vee \pm 5 \%$	
Industrial (I) Devices	
Supply Voltage (VCC)	
8088-1, 8088-2 $5 \vee \pm 5 \%$	
Military (M) Devices	
Supply Voltage (V_{CC}) $5 \mathrm{~V} \pm 10 \%$	
Operating ranges defin functionality of the devi	ween which the

DC CHARACTERISTICS over operating range (for APL, Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min	Max	Units
$V_{\text {iL }} \dagger$	Input Low Voltage	COML: see Note 1		-0.5*	+0.8	V
		MIL: $V_{\text {CC }}=$ Min. \& Max.				
$\mathrm{V}_{\mathrm{IH}} \dagger$	Input High Voltage	COML: see Notes 1 \& 2		2.0	$V_{C C}+0.5 *$	V
		MIL: $\mathrm{V}_{\mathrm{CC}}=$ Min. \& Max.				
V_{OL}	Output Low Voltage	COML: $1 \mathrm{OL}=2.0 \mathrm{~mA}$			0.45	V
		$\begin{aligned} \text { MIL: } & I_{O L}=2.0 \mathrm{~mA} \\ V_{C C} & =M i n . \end{aligned}$				
	Output High Voltage	COML: $\mathrm{IOH}=-400 \mu \mathrm{~A}$		2.4		V
VOH						
Icc	Power Supply Current (Note 6)	MIL: $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=$ Max.			340	mA
Ll	Input Leakage Cument	COML: $0 \quad \vee \leqslant V_{1 N} \leqslant V_{C C}$			± 10	$\mu \mathrm{A}$
		$\begin{aligned} \text { MIL: } \left.\begin{array}{rl} V_{C C} & =\text { Max. } \\ V_{\text {IN }} & =5.5 \mathrm{~V} \end{array}\right) 0 \mathrm{~V} \end{aligned}$		-10	10	
Sott	Output Leakage Current	COML: $0.45 \mathrm{~V} \leqslant \mathrm{~V}_{\text {OUT }} \leqslant V_{C C}$			COML ± 10	$\mu \mathrm{A}$
		$\begin{aligned} & \text { MiL: } V_{C C}= \\ & V_{\text {OUT }}=5.5 \\ & \text { \& \& } 0.45 \mathrm{~V} \end{aligned}$		MIL - 10	MIL 10	
VCL	Clock Input Low Voltage			-0.5	+0.6	V
V_{CH}	Clock Input High Voltage			3.9	$V_{\mathrm{CC}}+1.0$	V
$C_{\text {IN }}$	Capacitance of Input Buffer (All input except $\mathrm{AD}_{0}-\mathrm{AD}_{7}, \mathrm{RQ} / \mathrm{GT}$)	$\mathrm{fc}^{\text {c }}=1 \mathrm{MHz}$			15	$\rho \mathrm{F}$
ClO_{10}	Capacitance of $1 / 0$ Buffer ($\mathrm{AD}_{0}-\mathrm{AD} 7$, RQ/GT)	ic $=1 \mathrm{MHz}$			15	pF
Ioc	Power Supply Current	$T_{A}=25^{\circ} \mathrm{C}$	8088		340	$m A$
			8086-1, -2		350	
			P8088		250	

Notes: 1. V_{IL} tested with $\mathrm{MN} / \overline{\mathrm{MX}}$ pin $=0 \mathrm{~V}$; V_{IH} tested with $\mathrm{MN} / \overline{\mathrm{MX}}$ pin $=5 \mathrm{~V}$; $\mathrm{MN} / \overline{\mathrm{MX}}$ is a strap pin.
2. Not applicable to $\overline{\mathrm{AQ}} / \overline{\mathrm{GTO}}$ and $\overline{\mathrm{RQ}} / \overline{\mathrm{GT1}}$ pins (pins 30 and 31).
3. Signal at 8284 or 8288 shown for reference only.
4. Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
5. Applies only to T_{3} and Wait states.
6. $I_{C C}$ is measured while running a functional pattern with spec value $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ loads applied.

* Guaranteed by design; not tested.
\dagger Group A, Subgroups 7 and 8 only are tested.
$\dagger \dagger$ Group A, Subgroups 1 and 2 only are tested.

SWITCHING CHARACTERISTICS over COMMERCIAL operating range MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS

Parameter Symbol	Parameter Description	Test Conditions	8088		8088-2		8088-1		Units
			Min	Max	Min	Max	Min	Max	
TCLCL	CLK Cycle Periad		200	500	125	500	100	500	ns
TCLCH	CLK Low Time		118		68		53		ns
TCHCL	CLK High Time		69		44		39		ns
TCH1CH2	CLK Rise Time	From 1.0 to 3.5 V		10		10		10	ns
TCL2CL1	CLK Fall Time	From 3.5 to 1.0 V		10		10		10	ns
TDVCL	Data in Set-up Time		30		20		5		ns
TCLDX	Data in Hold Time		10		10		10		ns
TR1VCL	RDY Set-up Time into 8284 (See Notes 3, 4)		35		35		35		ns
TCLA1X	RDY Hold Time into 8284 (See Notes 3, 4)		0		0		0		ns
TAYHCH	READY Set-up Time into 8088		178		68		53		ns
TCHRYX	READY Hold Time into 8088		30		20		20		ns
TRYLCL	READY Inactive to CLK (See Note 5)		-8		-8		-10		ns
THVCH	HOLD Set-up Time		35		20		20		ns
TINVCH	INTR, NMI, TEST' Set-up Time (See Note 4)		30		15		15		ns
TILIH	Input Rise Time (Except CLK)	From 0.8 to 2.0 V		20		20		20	ns
TIHIL	Input Fall Time (Except CLK)	From 2.0 to 0.8 V		12		12		12	ns

SWITCHING CHARACTERISTICS over COMMERCIAL operating range (continued) TIMING RESPONSES

Parameter Symbol	Parameter Description	Test Conditions	8088		8088-2		8088-1		Units
			Min	Max	Min	Max	Min	Max	
TCLAV	Address Valid Delay	$C_{L}=20-100 \mathrm{pF}$ for all 8088 Outputs (in addition to internal loads)	10	110	10	60	10	50	ns
TCLAX	Address Hold Time		10		10		10		ns
TCLAZ	Address Float Delay		TCLAX	80	TCLAX	50	10	40	ns
TLHLL	AlE Width		TCLCH -20		TCLCH -10		TCLCH -10		ns
TCLLL	ALE Active Delay			80		50		40	ns
TCHLL	ALE Inactive Delay			85		55		45	ns
tllay	Address Hold Time to ALE Inactive		TCHCL - 10		TCHCL -10		TCHCL - 10		ns
TCLDV	Data Valid Delay		10	110	10	60	10	50	ns
TCHDX	Data Hold Time		10		10		10		ns
TWHDX	Data Hold Time After WR		TCLCH -30		TCLCH -30		TCLCH - 25		ns
TCVCTV	Control Active Delay 1		10	110	10	70	10	50	ns
TCHCTV	Control Active Delay 2		10	110	10	60	10	45	ns
TCVCTX	Control Inactive Deiay		10	110	10	70	10	50	ns
TAZRL	Address Float to READ Active		0		0		0		ns
TCLRL	$\overline{\text { AD Active Delay }}$		10	165	10	100	10	70	ns
TCLRH	RD inactive Delay		10	150	10	80	10	60	ns
TRHAV	RD inactive to Next Address Active		TCLCL -45		TCLCL -40		TCLCL -35		ns
TCLHAV	HLDA Valid Delay		10	160	10	100	10	60	ns
TRLRH	$\overline{\text { RD width }}$		2TCLCL -75		2TCLCL -50		2TCLCL -40		ns
TWLWH	WR Width		2TCLCL -60		2TCLCL -40		2TCLCL -35		ns
TAVAL	Address Valid to ALE Low		TCLCH -60		rCLCH -40		TCLCH -35		ns
TOLOH	Output Rise Time	From 0.8 to 2.0 V		20		20		20	ns
TOHOL	Output Fall Time	From 2.0 to 0.8 V		12		12		12	ns

SWITCHING TEST INPUT/OUTPUT WAVEFORM

AC testing inputs are driven at 2.4 V for a logic " 1 V " and 0.45 V for a logic " 0 ." The clock is driven at 4.3 V and 0.25 V . Timing measurements are made at 1.5 V for both a logic " 1 " and " 0 ."

SWITCHING CHARACTERISTICS over COMMERCIAL operating range (continued) MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) TIMING REQUIREMENTS

Parameter Symbol	Parameter Description	Test Conditions	8088		8088-2		8088-1		Units
			Min	Max	MIn	Max	Min	Max	
TCLCL	CLK Cycle Period		200	500	125	500	100	500	ns
TCLCH	CLK Low Time		118		68		53		ns
TCHCL	CLK High Time		69		44		39		ns
TCH1CH2	CLK Rise Time	From 1.0 to 3.5 V		10		10		10	ns
TCL2CL 1	CLK Fall Time	From 3.5 to 1.0 V		10		10		10	ns
TDVCL	Data in Set-up Time		30		20		5		ns
TCLDX	Data in Hold Time		10		10		10		ns
TR1VCL	RDY Set-up Time into 8284 (See Notes 1, 2)		35		35		35		ns
TCLR1X	RDY Hold Time into 8284 (See Notes 1,2)		0		0		0		ns
TRYHCH	READY Set-up Time into 8088		118		68		53		ns
TCHRYX	READY Hold Time into 8088		30		20		20		ns
TRYLCL	READY Inactive to CLK (See Note 3)		-8		-8		-10		ns
TINVCH	Set-up Time for Recognition (INTR, NMI, TEST) (See Note 2)		30		15		15		ns
TGVCH	RQ/GT Set-up Time		30		15		12		ns
TCHGX	RQ Hold Time into 8086		40		30		20		ns
TILIH	Input Rise Time (Except CLK)	From 0.8 to 2.0 V		20		20		20	ns
TIHIL	Input Fall Time (Except CLK)	From 2.0 to 0.8 V		12		12		12	ns

Notes: 1. Signal at 8284 or 8288 shown for reference only.
2. Set-up requirement for asynchronous sigral only to guarantee recognition at next CLK.
3. Applies only to T_{3} and Wait states.

SWITCHING CHARACTERISTICS over COMMERCIAL operating range (continued) TIMING RESPONSES

Parameter Symbol	Parameter Description	Test Conditions	8088		8008-2		8088-1		Units
			Min	Max	Min	Max	Min	Max	
TCLML	Command Active Delay (See Note 1)	$C_{L}=20-100 \mathrm{pF}$ for all 8088 outputs (in addition to internal loads)	10	35	10	35	10	35	ns
TCLMH	$\begin{aligned} & \text { Command Inactive Delay } \\ & \text { (See Note 1) } \end{aligned}$		10	35	10	35	10	35	ns
TRYHSH	READY Active to Status Passive (See Note 3)			110		65		45	ns
TCHSV	Status Active Delay		10	110	10	60	10	45	ns
TCLSH	Status Inactive Delay		10	130	10	70	10	55	ns
TCLAV	Address Valid Delay		10	110	10	60	10	50	ns
tclax	Address Hold Time		10		10		10		ns
tclaz	Address Float Delay		TCLLAX	80	TCLAX	50	10	40	ns
TSVLH	Status Valid to ALE High (See Note 1)			15		15		15	ns
TSVMCH	Status Valid to MCE High (See Note 1)			15		15		15	ns
TCLLH	CLK Low to ALE Valid (See Note 1)			15		15		15	ns
TCLMCH	$\begin{aligned} & \hline \text { CLK Low to MCE High } \\ & \text { (See Note 1) } \\ & \hline \end{aligned}$			15		15		15	ns
TCHLL	ALE Inactive Delay (See Note 1)			15		15		15	ns
TCLMCL	MCE Inactive Delay (See Note 1)			15		15		15	ns
TCLDV	Data Valid Delay		10	110	10	60	10	50	ns
TCHDX	Data Hold Time		10		10		10		ns
TCVNV	$\begin{aligned} & \hline \text { Control Active Delay } \\ & \text { (See Note 1) } \\ & \hline \end{aligned}$		5	45	5	45	5	45	ns
TCVNX	Control Inactive Delay (See Note 1)		10	45	10	45	10	45	ns
TAZRL	Address Float to Read Active		0		0		0		ns
TCLAL	RO Active Delay		10	165	10	100	10	70	ns
TCLRH	RD Inactive Delay		10	150	10	80	10	60	ns
TRHAV	RD Inactive to Next Address Active		$\begin{gathered} \hline \text { TCLCL } \\ \hline-45 \\ \hline \end{gathered}$		$\begin{gathered} \text { TCLCL } \\ \hline-40 \\ \hline \end{gathered}$		$\begin{gathered} \text { TCLCL } \\ -35 \\ \hline \end{gathered}$		ns
TCHDTL	Direction Control Active Delay (See Note 1)			50		50		50	ns
TCHDTH	Direction Control Inactive Delay (See Note 1)			30		30		30	ns
TCLGL	GT Active Delay			85		50	0	45	ns
TCLGH	GT Inactive Delay			85		50	0	45	ns
TRLRH	RD width		$\begin{gathered} 2 \text { TCLCL } \\ -75 \\ \hline \end{gathered}$		$\begin{gathered} \text { 2TCLCL } \\ \hline-50 \\ \hline \end{gathered}$		$\begin{gathered} 2 \text { TCLCL } \\ -40 \\ \hline \end{gathered}$		ns
TOLOH	Output Rise Time	From 0.8 to 2.0 V		20		20		20	ns
TOHOL	Output Fall Time	From 2.0 to 0.8 V		12		12		12	ns

Notes: 1. Signal at 8284 or 8288 shown for reference only.
2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
3. Applies only to T_{2} state (8 ns into T_{3} state).

AMD

SWITCHING CHARACTERISTICS over MILITARY operating range (for APL Products, Group A,
Subgroups $9,10,11$ are tested unless otherwise noted)

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS

Parameter Symbol	Parameter Description	Test Conditions (Note 6)	8088		8088-2		Unit
			Min.	Max.	Min.	Max.	
TCLCL	CLK Cycle Period (Note 11)		200	500	125	500	ns
TCLCH	CLK LOW Time		118		68		ns
TCHCL	CLK HIGH Time		69		44		ns
TCH1CH2	CLK Rise Time (Note 5)	From 1.0 to 3.5 V		10		10	ns
TCL2CL1	CLK Fall Time (Note 5)	From 3.5 to 1.0 V		10		10	ns
TOVCL	Data in Setup Time		30		20		ns
TCLDX	Data in Hold Time		10		10		ns
TRIVCL	RDY Setup Time into 8284A (Notes 1 \& 2)		35		35		ns
TCLR1X	RDY Hold Time into 8284A (Notes 182)		0		0		ns
TRYHCH	READY Setup Time into 8088		118		68		ns
TCHRYX	READY Hold Time into 8088		30		20		ns
TRYLCL	READY Inactive to CLK (Note 3)		-8		-8		ns
THVCH	HOLD Setup Time		35		20		ns
TINVCH	INTR, NMI, TEST Setup Time (Note 2)		30		15		ns
TILIH	Input Rise Time (Except CLK) (Note 5)	From 0.8 to 2.0 V		20		20	ns
TIHIL	Input Fall Time (Except CLK) (Note 5)	From 2.0 to 0.8 V		12		12	ns

Notes: 1. Signal at 8284A and 8288 shown for reference only.
2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
3. Applies only to $T 3$ and wait states.
4. Applies only to T 2 state (8 ns into T 3).
5. Not tested; these specs are controlled by the Teradyne $J 941$ tester.
6. $V_{C C}=4.5 \mathrm{~V}, 5.5 \mathrm{~V} \quad V_{\text {IH }}=2.4 \mathrm{~V}$
$\begin{array}{ll}V_{\text {IL }}=.45 \mathrm{~V} & V_{\text {IHC }}=4.3 \mathrm{~V} \\ V_{\text {ILC }}=.25 \mathrm{~V} & V_{\mathrm{OH}}=1.6 \mathrm{~V}\end{array}$
$V_{\text {OL }}=1.4 \mathrm{~V}$
7. Minimum spec tested at V_{CC} Max. (5.5 V) only.
8. Maximum spec tested at $V_{C C}$ Min. (4.5 V) only.
9. Tested at VCC Max. (5.5 V) only.
10. Tested at VCC Min. (4.5 V) only.
11. Test conditions for TCLCL Max. are:

$$
\begin{array}{ll}
\text { Iest conditions for ICLCL Max are: } \\
\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} & \mathrm{~V}_{\mathrm{OL}}=1 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} & \mathrm{~V}_{\mathrm{IH}}=4 \mathrm{~V}
\end{array}
$$

$$
\begin{array}{ll}
V_{\mathrm{IL}}=0 \mathrm{~V} & V_{\mathrm{IH}}=4 \mathrm{~V} \\
V_{\mathrm{ILC}}=0 \mathrm{~V} & V_{\mathrm{IHC}}=5 \mathrm{~V}
\end{array}
$$

SWITCHING CHARACTERISTICS over MILITARY operating range (continued) TIMING RESPONSES

Parameter Symbol	Parameter Description	Test Conditions (Note 6)	8088		8088-2		Unit
			Min.	Max.	Min.	Max.	
TCLAV	Address Valid Delay	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ for all 8088 Outputs (in addition to internal loads).	10	110	10	60	ns
TCLAX	Address Hold Time (Notes 7 \& 8)		10		10		ns
TCLAZ	Address Float Delay (Note 8)		10	80	10	50	ns
TLHLL	ALE Width (Note 10)		98		58		ns
TCLLH	ALE Active Delay (Note B)			80		50	ns
TCHLL	ALE Inactive Delay (Note 8)			85		55	ns
TLLAX	Address Hold Time to ALE Inactive (Note 7)		59		34		ns
TCLDV	Data Valid Delay (Note 8)		10	110	10	60	ns
TCHDX	Data Hold Time (Note 10)		10		10		ns
TWHDX	Data Hold Time After WR (Note 9)		88		38		ns
TCVCTV	Control Active Delay 1 (Note 8)		10	110	10	70	ns
TCHCTV	Control Active Delay 2 (Note 8)		10	110	10	60	ns
TCVCTX	Control Inactive Delay (Note 8)		10	110	10	70	ns
TAZRL	Address Float to READ Active (Note 9)		0		0		ns
TCLRL	$\overline{\mathrm{RD}}$ Active Delay (Note 8)		10	165	10	100	ns
TCLRH	$\overline{\mathrm{RD}}$ Inactive Delay (Note 8)		10	150	10	B0	ns
TRHAV	$\overline{\mathrm{RD}}$ Inactive to Next Address Active (Note 10)		155		85		ns
TCLHAV	HLDA Valid Delay (Note 8)		10	160	10	100	ns
TRLRH	$\overline{\overline{R D}}$ Width (Note 10)		325		200		ns
TWLWH	$\overline{\text { Wh }}$ Width (Note 10)		340		210		ns
TAVAL	Address Valid to ALE Low (Note 9)		58		28		ns
TOLOH	Output Rise Time (Note 9)	From 0.8 to 2.0 V		20		20	ns
TOHOL	Output Fail Time (Note 9)	From 2.0 to 0.8 V		12		12	ns

Notes: 1. Signal at 8284A and 8288 shown for reference only
Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
Applies only to T3 and wait states.
Applies only to T 2 state (8 ns into T 3)
Not tested; these specs are controlled by the Teradyne J941 tester
Not tested; these specs are controlled by
$V_{C C}=4.5 \mathrm{~V}, 5.5 \mathrm{~V} \quad V_{I H}=2.4 \mathrm{~V}$
$\begin{array}{lll}V_{C C}=4.5 \mathrm{~V}, 5.5 \mathrm{~V} & V_{I H}=2.4 \mathrm{~V} \\ V_{\text {IL }}=.45 \mathrm{~V} & V_{1 H C}=4.3 \mathrm{~V}\end{array}$
$\begin{array}{ll}V_{\text {IL }}=.45 \mathrm{~V} & V_{\text {IHC }}=4.3 \mathrm{~V} \\ V_{\text {ILC }}=.25 \mathrm{~V} & V_{O H}=1.6 \mathrm{~V}\end{array}$
$\mathrm{VOL}=1.4 \mathrm{~V}$
7. Minimum spec tested at VCC Max. (5.5 V) only
8. Maximum spec tested at VCC Min. (4.5 V) only
9. Tested at VCC Max. (5.5 V) only
. Tested at VCC Min. (4.5 V) only.
11. Test conditions for TCLCL Max. are:
$\begin{array}{ll}V_{C C}=4.5 \mathrm{~V} & V_{\mathrm{OL}}=1 \mathrm{~V} \\ V_{\mathrm{IL}}=0 \mathrm{~V} & V_{\mathrm{H}}=4 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{ILC}}=0 \mathrm{~V} & \mathrm{~V}_{\mathrm{IHC}}=5 \mathrm{~V}\end{array}$

SWITCHING CHARACTERISTICS over MILITARY operating range (continued) MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) TIMING REQUIREMENTS

Parameter Symbot	Parameter Description	Test Conditions (Note 6)	8088		8088-2		Unit
			Min.	Max.	Min.	Max.	
TCLCL	CLK Cycle Period (Note 11)		200	500	125	500	ns
TCLCH	CLK LOW Time		118		68		ns
TCHCL	CLK HIGH Time		69		44		ns
TCH1CH2	CLK Rise Time (Note 5)	From 1.0 to 3.5 V		10		10	ns
TCL2CL1	CLK Fall Time (Note 5)	From 3.5 to 1.0 V		10		10	ns
TDVCL	Data in Setup Time		30		20		ns
TCLDX	Data in Hold Time		10		10		ns
TR1VCL	RDY Setup Time into 8284A (Notes 1 \& 2)		35		35		ns
TCLA1X	RDY Hold Time into 8284A (Notes 1 \& 2)		0		0		ns
TRYHCH	READY Setup Time into 8088		118		68		ns
TCHRYX	READY Hold Time into 8088		30		20		ns
TRYLCL	READY Inactive to CLK (Note 3)		-8		-8		ns
TINVCH	Setup Time for Recognition (INTR, NMI, TEST (Note 2)		30		15		ns
TGVCH	RQ/GY Setup Time		30		15		ns
TCHGX	RQ Hold Time into 8086		40		30		ns
TILIH	Input Rise Time (Except CLK) (Note 5)	From 0.8 to 2.0 V		20		20	ns
THHIL	input Fall Time (Except CLK) (Note 5)	From 2.0 to 0.8 V		12		12	ns

Notes: 1. Signal at B284A and 8288 shown for reference only.
2. Setup requirement for asynchronous signal only to guarantee recognition at next ClK.
3. Applies only to T3 and wait states.
4. Applies only to T2 state (8 ns into T3).
5. Not tested; these specs are controtled by the Teradyne J941 tester
6. $V_{C C}=4.5 \mathrm{~V}, 5.5 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{IH}}=2.4 \mathrm{~V}$
$\begin{array}{ll}V_{I L}=.45 \mathrm{~V} & V_{\text {IHC }}=4.3 \mathrm{~V} \\ V_{I L C}=25 \mathrm{~V} & \mathrm{~V}_{\mathrm{OH}}=1.6 \mathrm{~V}\end{array}$
$V_{\text {ILC }}=.25 V$
Minimum spec tested at Vcc Max. (5.5 V) only
. Maximum spec tested at VCC Min. (4.5 V) only
9. Tested at VCC Max. (5.5 V) only.
10. Tested at VCC Min. (4.5 V) only.
11. Test conditions for TCLCL Max. are:

Test conditions for TCLCL Max. are:	
$V_{C C}=4.5 V$	$V_{O L}=1 \mathrm{~V}$
$V_{\text {IL }}=0 V$	$V_{H H}=4 \mathrm{~V}$
$V_{\text {ILC }}=0 \mathrm{~V}$	$V_{\mathrm{HHC}}=5 \mathrm{~V}$

SWITCHING CHARACTERISTICS over MILITARY operating range (continued) TIMING RESPONSES

Parameter Symbol	Parameter Description	Test Conditions (Note 6)	8088		8088-2		Unit
			Min.	Max.	Min.	Max.	
TCLML	Command Active Delay (Note 1)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \text { for all } 8088 \\ & \text { Outputs (n addition } \\ & \text { to internal loads) } \end{aligned}$	10	35	10	35	ns
TCLMH	Command Inactive Delay (Note 1)		10	35	10	35	ns
TRYHSH	READY Active to Status Passive (Note 4)			110		65	ns
TCHSV	Status Active Delay (Notes 7 \& 8)		10	110	10	60	ns
TCLSH	Status Inactive Delay		10	130	10	70	ns
TCLAV	Address Valid Delay		10	110	10	60	ns
TCLAX	Address Hoid Time		10		10		ns
TCLAZ	Address Float Delay		10	80	10	50	ns
TSVLH	$\begin{aligned} & \text { Status Valid to ALE HIGH } \\ & \text { (Note 1) } \end{aligned}$			15		15	ns
TSVMCH	Status Valid to MCE HIGH (Note 1)			15		15	ns
TCLLH	CLK LOW to ALE Valid (Note 1)			15		15	ns
TCLMCH	CLK LOW to MCE HIGH (Note 1)			15		15	ns
TCHLL	ALE Inactive Delay (Note 1)			15		15	ns
TCLMCL	MCE Inactive Delay (Note 1)			15		15	ns
TCLOV	Data Valid Delay		10	110	10	60	ns
TCHDX	Data Hold Time		10		10		ns
TCVNV	Control Active Delay (Note 1)		5	45	5	45	ns
TCVNX	$\begin{aligned} & \text { Control Inactive Delay } \\ & \text { (Note 1) } \end{aligned}$		10	45	10	45	ns
TAZRL	Address Float to Read Active		0		0		ns
TCLRL	$\overline{\text { RD Active Delay }}$		10	165	10	100	ns
TCLRH	$\overline{\mathrm{AD}}$ Inactive Delay		10	150	10	80	ns
TRHAV	RD Inactive to Next Address Active		155		65		ns
TCHDTL	Direction Control Active Delay (Note 1)			50		50	ns
TCHDTH	Direction Control Inactive Delay (Note 1)			30		30	ns
TCLGL	GT Active Delay (Note 8)			110		50	ns
TCLGH	GT Inactive Delay (Note 8)			85		50	ns
TRLRH	FD Width		325		200		ns
TOLOH	Output Rise Time	From 0.8 to 2.0 V		20		20	ns
TOHOL	Output Fall Time	From 2.0 to 0.8 V		12		12	ns

Notes: 1. Signal at 8284 A and 8288 shown for reference only.
2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK.

Applies only to T3 and wait states.
Applies onty to T2 state (8 ns into T3)
5. Not tested; these specs are controlled by the Teradyne 1941 tester.
6. $V_{C C}=4.5 \mathrm{~V} .5 .5 \mathrm{~V} \quad V_{1 H}=2.4 \mathrm{~V}$
$V_{\text {IL }}=.45 \mathrm{~V} \quad \mathrm{~V}_{\text {IHC }}=4.3 \mathrm{~V}$
$V_{\text {ILC }}=.25 \mathrm{~V} \quad V_{O H}=1.6 \mathrm{~V}$
$V_{\mathrm{OL}}=1.4 \mathrm{~V}$
Minimum spec tested at $V_{C c}$ Max. (5.5 V) only.
. Maximum spec tested at VCC Min. (4.5 V) only.
Tested at VCC Max. (5.5 V) only.
10. Tested at Vcc Min. (4.5 V) only.
11. Test conditions for TCLCL Max. are:

```
lol
VIL =0V
VOL
```

$V_{1 H C}=5 \mathrm{~V}$

SWITCHING WAVEFORMS

BUS TIMING - MINIMUM MODE SYSTEM (continued)

Notes: 1. All signals switch between $V_{O H}$ and $V_{O L}$ unless otherwise specified.
2. RDY is sampled near the end of T_{2}, T_{3}, T_{W} to determine if T_{W} machines states are to be inserted
3. Two INTA cycles run back-to-back. The 8088 local ADDR/DATA bus is floating during both INTA cycles. Control signals are shown for the second INTA cycle.
Signals at 8284 are shown for reference only.
5. All timing measurements are made at $\mathbf{1 . 5} \mathrm{V}$ unless otherwise noted.

SWITCHING WAVEFORMS (continued)

BUS TIMING - MAXIMUM MODE SYSTEM (USING 8288)

WF006801

Notes: 1. All signals switch between V_{OH} and V_{OL} unless otherwise specified.
2. RDY is sampled near the end of T_{2}, T_{3}, T_{W} to determine if T_{W} machines states are to be inserted.
3. Cascade address is valid between first and second INTA cycles.
4. Two INTA cycles run back-to-back. The 8088 local ADOR/DATA bus is floating during both INTA cycles. Control for pointer address is shown for second INTA cycle.
5. Signals at 8284 or 8288 are shown for reference only.
6. The issuance of the 8288 command and control signals (MRDC, MWTC, AMWC, IORC, IOWC, AIOWC, INTA, and DEN) lags the active high 8288 CEN.
. All timing measurements are made at 1.5 V unless otherwise noted.
8. Status inactive in state just prior to T_{4}.

8086/8088INSTRUCTION SET SUMMARY				
DATA TRANSFER				
MOV = Move	76543210	76543210	7654321	654321
Register/memory to/from register	100010 dw	mod reg r/m		
Immediate to register/memory	1100011 w	$\bmod 000 \mathrm{r} / \mathrm{m}$	data	data if $w=1$
Immediate to register	1011 wreg	data	data if $w=1$	
Memory to accumulator	1010000 w	addr-low	addr-high	
Accumulator to memory	1010001 w	addr-low	addr-high	
Register/memory to segment register	10001110	mod 0 reg r/m		
Segment register to register/memory	10001100	mod 0 reg r/m		
PUSH $=$ Push:				
Register/memory	11111111	$\bmod 110 \mathrm{r} / \mathrm{m}$		
Register	01010 reg			
Segment register	000 reg 110			
POP = Pop:				
Register/memory	10001111	$\bmod 000 \mathrm{f} / \mathrm{m}$		
Register	01011 reg			
Segment register	000 reg 111			
XCHG = Exchange:				
Register/memory with register	1000011 w	mod reg r/m		
Register with accumulator	10010 reg			
$\mathbf{N} \mathbf{N}=$ input from:				
Fixed port	1110010 w	port		
Variable port	1110110 w			
OUT $=$ Output to:				
Fixed port	1110011 w	port		
LEA = Load EA to register	10001101	mod reg r/m		
LDS = Load pointer to DS	11000101	mod reg r/m		
LES $=$ Load pointer to ES $\quad 11000100$		mod reg r/m		
PUSHF = Push flags $\quad 10011100$				
POPF = Pop flags	10011101			

INSTRUCTION SET SUMMARY (continued)

ARITHMETIC

$A D D=$ Add
Reg/memory with register to either Immediate to register / memory

Immediate to accumulator

ADC $=$ Add with carry:
Reg/memory with register to either Immediate to register/memory

Immediate to accumulator

INC $=$ Increment:
Register/memory
Register
$\mathbf{A M}=\mathbf{A S C I I}$ adjust for add
DAA = Decimal adjust for add

SUB = Subtract:

Reg/memory and register to either immediate from register/memory

Immediate from accumulator

SBB = Subtract with borrow:
Reg/memory and register to either
Immediate from register/memory
Immediate from accumulator
DEC = Decrement:
Register/memory
Register
NEG Change sign

CMP = Compare:
Register/memory with register
Register with register/memory
Immediate with register/mernory
Immediate with accumulator
AAS ASCII adjust for subtract
DAS Decimal adjust for subtract
MUL Mulitiply (unsigned)
IMUL Integer multiply (signed):
AAM ASCII adjust for multiply
DIV Divide (unsigned):
IOAV Integer divide (signed)
AAD ASCH adjust for divide
CBW Convert byte to word
CWD Convert word to double word

000100 dw	mod reg r / m		
100000 sw	$\bmod 010 \mathrm{r} / \mathrm{m}$	data	data if s:w $=01$
0001010 w	data	data if w=1	

1111111 w	$\bmod 000 \mathrm{r} / \mathrm{m}$
01000 reg	
00110111	
00100111	

001010 dw	mod reg r/m		
100000 m	$\bmod 101 \mathrm{r} / \mathrm{m}$	data	data if s:w $=01$
0010110 w	data	data if $w=1$	

| $000110 \mathrm{~d} w$ | mod reg r / m |
| :--- | :--- | :--- |

| 1000000 | mod $011 \mathrm{r} / \mathrm{m}$ | data | data if s:w $=01$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 0 0 1 1 1 0 w | data | data if $\mathrm{w}=1$ | |

$1111111 m$	$\bmod 001 \mathrm{r} / \mathrm{m}$
01001 reg	
1111011 w	$\bmod 011 \mathrm{r} / \mathrm{m}$

0011101 w	mod reg r/m		
0011100 w	mod reg r/m		
1000008 w	mod $111 \mathrm{r} / \mathrm{m}$	data	data if s:w $=01$
0011110 w	data	data if $w=1$	
00111111			
00101111			
1111011 w	$\bmod 100 \mathrm{r} / \mathrm{m}$		
1111011 w	$\bmod 101 \mathrm{r} / \mathrm{m}$		
11010100	00001010		
1111011 w	$\bmod 110 \mathrm{r} / \mathrm{m}$		
1111011 w	$\bmod 11 \pm \mathrm{r} / \mathrm{m}$		
11010101	00001010		
10011000			
10011001			

INSTRUCTION SET SUMMARY (continued)

LOGIC

NOT Invert
SHL/SAL Shift logical/arithmetic left
SHR Shift logical right
SAR Shift arithmetic right
ROL Rotate left
ROR Rotate right
RCL Rotate through carry flag left RCR Rotate through carry right

AND = And:

Reg/memory and register to either Immediate to register/memory
Immediate to accumulator

1111011 w	$\bmod 010 \mathrm{r} / \mathrm{m}$
110100 w	$\bmod 100 \mathrm{r} / \mathrm{m}$
110100 w	$\bmod 101 \mathrm{r} / \mathrm{m}$
110100 vw	$\bmod 111 \mathrm{r} / \mathrm{m}$
110100 vw	mod $000 \mathrm{r} / \mathrm{m}$
110100 vw	$\bmod 001 \mathrm{r} / \mathrm{m}$
110100 vw	mod $010 \mathrm{r} / \mathrm{m}$
110100 vw	$\bmod 011 \mathrm{r} / \mathrm{m}$

001000 d	$\bmod \mathrm{reg} \mathrm{r} / \mathrm{m}$		
1000000 w	$\bmod 100 \mathrm{r} / \mathrm{m}$	data	data if $\mathrm{w}=1$
0010010 w	data	data if $\mathrm{w}=1$	

TEST $=$ And function to flags, no result:
Register/memory and register
Immediate data and register/memory
Immediate data and accumulator
$O R=O r:$
Reg/memory and register to either
Immediate to register/memory
Immediate to accumulator

1000010 w	mod reg r/m		
1111011 w	$\bmod 000 \mathrm{r} / \mathrm{m}$	data	data if w = 1
1010100 w	data	data if w=1	

XOR = Exclusive or:
Reg/memory and register to either
Immediate to register/memory
Immediate to accumulator

| 0000010 dw | $\operatorname{modrog} \mathrm{r} / \mathrm{m}$ | |
| :---: | :---: | :---: | :---: |
| 10000000 w $\bmod 001 \mathrm{r} / \mathrm{m}$ data data it $\mathrm{w}=1$
 00000110 w data data $\mathrm{if} \mathrm{w}=1$ | | |.

001100 dw	$\mathrm{mod} \mathrm{reg} \mathrm{r} / \mathrm{m}$		
1000000 w	mod $110 \mathrm{r} / \mathrm{m}$	data	data if $w=1$
0011010 w	data	data if w=1	

STRING MANIPULATION:

REP = Repeat	11110012
MOVS = Move byte/word	1090010 w
CMPS = Compare byte/word	1010011 w
SCAS $=$ Scan byte/word	1010111 w
LODS = Load byte/wd to AL/AX	1010110 w
STOS = Store byte/wd from AL/A	1010101 w

INSTRUCTION SET SUMMARY (continued)

CONTROL TRANSFER

CALL = Call

Direct within segment
indirect within segment
Direct intersegment

Indirect intersegment

11101000	disp-low	disp-high
11111111	$\bmod 010 \mathrm{r} / \mathrm{m}$	
10011010	offset-low	offset-high
	seg-low	seg-high
11111111	$\bmod 019 \mathrm{r} / \mathrm{m}$	

JMP = Unconditional jump:
Direct within segment
Direct within segment-short
indirect within segment
Direct intersegment

Indirect intersegment

RET $=$ Return from CALL:
Within segment
Within segment adding immediate to SP Intersegment
Intersegment adding immediate to SP
JE/JZ $=$ Jump on equal/zero
JL/JNGE $=$ Jump on less/not greater or equal JLE/JNG $=$ Jump on less or equal/not greater JB/JNAE = Jump on below/not above or equal JBE/JNA = Jump on below or equal/not above JP/JPE = Jump on parity/parity even
JO = Jump on overflow
JS = Jump on sign
JNE/JNZ = Jump on not equal/not zero
JNL.JGE = Jump on not less/greater or equal
JNLE/JG = Jump on not less or equal/greater
JNB/JAE = Jump on not below/above or equal
JNBE/JA = Jump on not below or equal/above
JNP/JPO $=$ Jump on not par/par odd
JNO = Jump on not overflow
JNS = Jump on not sign
LOOP = Loop CX times
LOOPZ/LOOPE = LOOP while zero/equal
LOOPNZ/LOOPNE = LoOp while not zero/equal JCXZ = Jump on CX zero

11000011		
11000010	data-low	data-high
11001011		
11001010	data-low	data-high
01110100	disp	
01111100	disp	
01111110	disp	
01110010	disp	
01110110	disp	
01111010	disp	
01110000	disp	
01111000	disp	
01110101	disp	
01111101	disp	
0111111111	disp	
01110011	disp	
01110111	disp	
011	d isp	
01110001	disp	
01111001	disp	
11100010	disp	
11100001	disp	
11100000	disp	
11100011	disp	

INSTRUCTION SET SUMMARY (continued)

CONTROL TRANSFER (continued)
INT = Interrupt
Type specified
Type 3
INTO = interrupt on overflow
IRET = Interrupt return

PROCESSOR CONTROL

CLC = Clear carry	11111000	
CMC = Complement carry	11110101	
STC = Set carry	11111001	
CLD $=$ Clear direction	11111100	
STD $=$ Set direction	11111101	
CLI = Clear interrupt	11111010	
STI $=$ Set interrupt	1+111011	
HLT $=$ Halt	11110100	
WAIT $=$ Wait	10011011	
ESC = Processor Extension Escape	$11011 \times \times \times$	$\bmod \times \times \times 1 / \mathrm{m}$
LOCK = Bus lock prefix	11110000	

Footnotes:

$A L=8$-bit accumulator
$A L=8$-bit accumulator
$A X=16$-bit accumulator
$A X=16$-bit accurnula
$C X=$ Count register $C X=$ Count register
$D S=$ Data segment
DS = Data segment
$E S=$ Extra segment
$\mathrm{ES}=$ Extra segment
Above/below refers to unsigned value Above/below refers to
Greater $=$ more positive.
Greater = more positive.
Less $=$ less positive (more negative) signed values
if $d=1$ then "to" reg; if $d=0$ then "from" reg
$w=1$ then word instruction; if $w=0$ then byte instruction
if $\mathrm{mod}=11$ then r / m is treated as a REG field
if $\bmod =00$ then DISP $=0$, disp-low and disp-high are absent
if mod $=01$ then DISP $=$ disp-low sign-extended to 16 -bits, disp-high is absent
if $\bmod =10$ then DISP $=$ disp-high: disp-low
if $\mathrm{r} / \mathrm{m}=000$ then $E A=(\mathrm{BX})+(\mathrm{SI})+$ DISP
if $\mathrm{r} / \mathrm{m}=001$ then $E A=(B X)+(\mathrm{D} 1)+$ DISP
if $\mathrm{f} / \mathrm{m}=010$ then $E A=(B P)+(S I)+$ DISP
if $\mathrm{r} / \mathrm{m}=011$ then $E A=(B P)+(D I)+$ DISP
if $\mathrm{r} / \mathrm{m}=100$ then $E A=(S 1)+$ DISP
if $\mathrm{r} / \mathrm{m}=101$ then $E A=(\mathrm{DI})+$ DISP
if $\mathrm{r} / \mathrm{m}=110$ then $E A=(B P)+$ DISP*
if $\mathrm{r} / \mathrm{m}=111$ then $E A=(B X)+$ DISP
DISP follows 2nd byte of instruction (before data if required) *except if $\bmod =00$ and $\mathrm{r} / \mathrm{m}=110$ then EA $=$ disp-high: disp-low.
if $s: w=01$ then 16 bits of immediate data form the operand.
if $s: w=11$ then an immediate data byte is sign extended to form the 16-bit operand.
if $v=0$ then "count' $=1$; if $v=1$ then "count" in (CL)
$x=$ don't care
z is used for string primitives for comparison with Z.F Flag.
SEGMENT OVERRIDE PREFIX

0	0	1	reg	1	1	0

REG is assigned according to the following table:

16-Bit $\mathbf{w = 1)}$	s-Blt $(w=0)$	Seoment
000 AX	000 AL	00 ES
001 CX	001 CL	01 CS
010 DX	010 DL	10 SS
011 BX	011 BL	11 DS
100 SP	100 AH	
101 BP	101 CH	
110 SI	110 OH	
111 DI	111 BH	

Instructions which reference the flag register files as a $\mathbf{1 6}$-bit object use the symbol FLAGS to represent the file: FLAGS $=\mathrm{X}: \mathrm{X}: \mathrm{X}: \mathrm{X}:(\mathrm{OF}):(\mathrm{DF}):(\mathrm{TF}):(\mathrm{SF}):(\mathrm{ZF}): \mathrm{X}:(\mathrm{AF}): \mathrm{X}:(\mathrm{PF}): \mathrm{X}:(\mathrm{CF})$

