

Description

ACE4710B combines a P-Channel enhancement mode power MOSFET which is produced with high cell density and DMOS trench technology and a low forward voltage schottky diode. This device particularly suits low voltage applications, especially for battery powered circuits, the tiny and thin outline saves PCB consumption.

Features

MOSFET

- V_{DS}(V)=-20V
- I_D=-4A
- R_{DS(ON)}@-4.5V, 58mΩ (Typ.)
- R_{DS(ON)}@-2.5V, 76mΩ (Typ.)
- R_{DS(ON)}@-1.8V, 97mΩ (Typ.)

Schottky

- VR 20V
- IF 2A
- VF@1A<430mV

Application

- Li Battery Charging
- High Side DC/DC Converter
- High Side Driver for Brushless DC Motor
- Power Management in Portable, Battery Powered Devices

Absolute Maximum Ratings

Parameter		Symbol	Max	Unit
Drain-Source Voltage		V _{DSS}	-20	V
Gate-Source Voltage		V _{GSS}	±8	V
Drain Current (Continuous)	Continuous		-4	A
	Pulsed	D	-25	
Schottky Reverse Voltage		V _R	20	V
Schottky Continuous Forward Current		١ _F	2	А
Power Dissipation Derating above $T_A=25$ °C ^(Note 1)		P _D	1.5	W
Operating and Storage Temperature Range		$T_{J,}T_{STG}$	-55 to 150	°C

Note: 1. Device mounted on FR-4 PCB, 1 inch x 0.85 inch x 0.062 inches. The rating is for each chip in the package.

Packaging Type

Ordering information

Electrical Characteristics

 $T_A=25$ °C unless otherwise noted

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit		
P-channel Enhancement Mode MOSFET								
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =-250uA	-20			V		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-20V, V _{GS} =0V			-1	uA		
Gate Leakage Current	I _{GSS}	$V_{GS}=\pm 8V, V_{DS}=0V$			±100	nA		
Static Drain-Source On-Resistance	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-4A		58	96	mΩ		
		V _{GS} =-2.5V, I _D =-3A		76	118			
		V _{GS} =-1.8V, I _D =-2A		97	236			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{DS}=-250\mu A$	-0.5	-0.7	-1.2	V		
Turn-On Delay Time	T _{d(on)}	V _{DD} =-6V, R _L =6Ω, R _G =6Ω, V _{GEN} =-4.5V, I _D =-1A		20		ns		
Turn-On Rise Time	t _f			18				
Turn-Off Delay Time	t _{d(off)}			300				
Turn-Off Fall Time	t _f			120				
Input Capacitance	C _{iss}	V _{DS} =-6V, V _{GS} =0V f=1MHz		450		pF		
Output Capacitance	C _{oss}			180				
Reverse Transfer Capacitance	C _{rss}			90				

ACE4710B P-Channel Enhancement Mode MOSFET with Schottky Diode

Schottky Diode								
Breakdown Voltage	V _R	I _R =300uA	20			V		
Forward Voltage Drop	V _F	I _F =1A		0.37	0.43	V		
Maximum reverse leakage current	I _R	V _R =20V		15	200	uA		

Note : 2. Short duration test pulse used to minimize self-heating effect.

Typical Performance Characteristics

Figure 1. Output Characteristics

ACE4710B

P-Channel Enhancement Mode MOSFET with Schottky Diode

Typical Performance Characteristics

Figure 5. On Resistance Vs. Temperature

Figure 6. Threshold Voltage Vs. Temperature

Figure 7. Body Diode Forward Characteristics

Figure 9. Schottky Forward Characteristics

Schottky Diode Typical Performance Characteristics

Figure10. Schottky Reverse Characteristics

VER 1.2 4

ACE4710B

P-Channel Enhancement Mode MOSFET with Schottky Diode

Typical Performance Characteristics

Figure 11. Leakage Current Vs. Temperature

Packing Information

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/