ANALOG DEVICES

Preliminary Technical Data

FEATURES

2Ω Max On Resistance
0.5Ω Max On Resistance Flatness
200mA Continuous current
33 V supply range
Fully specified at $+12 \mathrm{~V}, \pm 15 \mathrm{~V}, \pm 5 \mathrm{~V}$
No V_{L} supply required
3 V logic-compatible inputs
Rail-to-rail operation
14-lead TSSOP and 16-lead LFCSP

APPLICATIONS

Automatic test equipment
Data aquisition systems
Battery-powered systems
Sample-and-hold systems
Audio signal routing
Communication systems
Relay Replacement

GENERAL DESCRIPTION

The ADG1404 is a complementary metal-oxide semiconductor (CMOS) analog multiplexer, comprising four single channels designed on an i CMOS process. i CMOS (industrial CMOS) is a modular manufacturing process that combines high voltage CMOS and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no previous generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, i CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The on resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion when switching audio signals.
i CMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and batterypowered instruments.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

The ADG1404 switches one of four inputs to a common output, D, as determined by the 3-bit binary address lines, A0, A1, and EN. Logic 0 on the EN pin disables the device. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. All switches exhibit break-before-make switching action. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

PRODUCT HIGHLIGHTS

1. 2Ω Max On Resistance over temperature.
2. Minimum distortion
3. 3 V logic-compatible digital inputs:
$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$
4. No V_{L} logic power supply required.
5. Ultralow power dissipation: $<0.03 \mu \mathrm{~W}$.
6. 14-lead TSSOP and 16 -lead $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP package.

Rev.PrB

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Specifications. 3
Dual Supply 3
Single Supply 5
Absolute Maximum Ratings 7
Truth Table 8
ESD Caution 7
Pin Configurations and Function Descriptions 8
Terminology 9
Typical Performance Characteristics. 10
Test Circuits 13
Outline Dimensions 15
Ordering Guide 15

REVISION HISTORY

SPECIFICATIONS

DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to + } \\ & 85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to + } \\ & 125^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match Between Channels (Δ Ron) On Resistance Flatness (Rflation)	1.5 0.1 0.1	2 0.5 0.5	$V_{\text {do }}$ to $\mathrm{V}_{\text {SS }}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} ; \text { Figure } 21 \\ & \mathrm{~V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$ $\mathrm{V}_{\mathrm{s}}=-5 \mathrm{~V}, 0 \mathrm{~V},+5 \mathrm{~V} ; \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, ID (Off) Channel On Leakage, Id, Is (On)	$\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.04 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \\ & \pm 2.5 \end{aligned}$	± 5 ± 5 ± 5		$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 10 \mathrm{~V} \text {; Figure } 22 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 10 \mathrm{~V} \text {; Figure } 22 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \text {; Figure } 23 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current, $\mathrm{I}_{\mathrm{INL} \text { or }} \mathrm{I}_{\mathrm{NH}}$ Digital Input Capacitance, C_{IN}	$\begin{aligned} & 0.005 \\ & 2.5 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.5 \end{gathered}$	\vee min V max μA typ $\mu \mathrm{A} \max$ pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
```DYNAMIC CHARACTERISTICS \({ }^{1}\) Transition Time, ttrans ton (EN) toff (EN) Break-Before-Make Time Delay, \(t_{D}\) Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion + Noise -3 dB Bandwidth Insertion Loss \(\mathrm{C}_{\mathrm{s}}\) (Off) \(C_{D}\) (Off) \(C_{D}, C_{S}(O n)\)```	120 150 70 85 90 110 25 50 50 60 0.01 50 0.17 35 100 150	$\begin{aligned} & 200 \\ & 110 \\ & 155 \\ & 10 \end{aligned}$	$\begin{aligned} & 200 \\ & 110 \\ & 155 \\ & 10 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ \% typ MHz typ dB typ pF typ pF max pF typ pF max pF typ pF max	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V} ; \mathrm{Figure}^{24} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=+10 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V} ; \text { Figure } 25 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { Figure } 26 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \text { Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text { Figure } 28 \\ & \mathrm{R}_{\mathrm{L}}=110 \Omega, 5 \mathrm{~V} \mathrm{rms}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 29 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \text { Figure } 29 \\ & \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \end{aligned}$
POWER REQUIREMENTS IDD	0.001			$\mu \mathrm{A}$ typ	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \end{aligned}$


	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to + } \\ & 85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+ \\ & 125^{\circ} \mathrm{C} \end{aligned}$		
IDD	150		$1$ $300$		Digital inputs $=5 \mathrm{~V}$
Iss	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}, 5 \mathrm{~V}$ or $\mathrm{V}_{\text {DD }}$
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$			$\begin{aligned} & 1 \\ & \pm 4.5 / \pm 16.5 \end{aligned}$	$\mu \mathrm{A}$ max   V   min/max	Gnd = 0V

[^0]
## SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

	$25^{\circ} \mathrm{C}$	$\begin{aligned} & \hline-40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		
ANALOG SWITCH   Analog Signal Range On Resistance (Ron)   On Resistance Match Between Channels ( $\Delta$ Ron) On Resistance Flatness (Rflat(on)	$\begin{aligned} & 2.5 \\ & 3 \\ & 0.1 \\ & 0.1 \end{aligned}$	4	0 V to $\mathrm{V}_{\mathrm{DD}}$	V   $\Omega$ typ   $\Omega$ max   $\Omega$ typ   $\Omega$ max   $\Omega$ typ	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} ; \text { Figure } 21 \\ & \mathrm{~V}_{\mathrm{D}}=+10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, 6 \mathrm{~V}, 9 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS   Source Off Leakage, Is (Off)   Drain Off Leakage, ID (Off)   Channel On Leakage, Id, Is (On)	$\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.04 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \\ & \pm 2.5 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 5 \\ & \pm 5 \end{aligned}$	nA typ   nA max   nA typ   nA max   nA typ   nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; Figure } 22 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; Figure } 22 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 10 \mathrm{~V} \text {; Figure } 23 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current, $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$ Digital Input Capacitance, $\mathrm{Cl}_{\mathrm{IN}}$	$\begin{aligned} & 0.001 \\ & 2.5 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.5 \end{gathered}$	$\vee$ min   V max   $\mu A$ typ   $\mu \mathrm{A}$ max   pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$   Transition Time, ttrans   ton (EN)   toff (EN)   Break-Before-Make Time Delay, $t_{D}$   Charge Injection   Off Isolation   Channel-to-Channel Crosstalk   -3 dB Bandwidth   $\mathrm{C}_{\mathrm{s}}$ (Off)   $C_{D}$ (Off)   $C_{D}, C_{S}(O n)$	$\begin{aligned} & 150 \\ & 190 \\ & 95 \\ & 120 \\ & 100 \\ & 125 \\ & 50 \\ & \\ & 50 \\ & 50 \\ & 60 \\ & 50 \\ & 35 \\ & 100 \\ & \\ & 150 \end{aligned}$		$\begin{aligned} & 265 \\ & 170 \\ & 170 \\ & 10 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF max pF typ pF max pF typ pF max	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { Figure } 24 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V} ; \text { Figure } 25 \\ & \mathrm{~V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { Figure } 26 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \text { Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \text { Figure } 28 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { Figure } 29 \\ & \mathrm{f}=1 \mathrm{MHz} ; \mathrm{V}_{\mathrm{S}}=6 \mathrm{~V} \end{aligned}$
POWER REQUIREMENTS ID IDD $V_{D D}$	$\begin{aligned} & 0.001 \\ & 150 \end{aligned}$		$\begin{aligned} & 1 \\ & 300 \\ & 5 / 16.5 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max V $\min / \max$	$\begin{aligned} & \text { V } \begin{array}{l} \mathrm{DD}=13.2 \mathrm{~V} \\ \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ \text { Digital inputs }=5 \mathrm{~V} \\ \text { Gnd }=0 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V} \end{array} .=\text {. } \end{aligned}$

[^1]
## ADG1404

## DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH   Analog Signal Range   On Resistance (Ros)   On Resistance Match Between Channels ( $\Delta$ Ron)   On Resistance Flatness (Rflation)	$\begin{aligned} & 4 \\ & 5 \\ & 0.1 \\ & \\ & 0.1 \end{aligned}$		0 V to V ${ }_{\text {dD }}$	V   $\Omega$ typ   $\Omega$ max   $\Omega$ typ   $\Omega$ max   $\Omega$ typ	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {; See figure } \mathrm{x} \\ & \mathrm{~V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$ $\mathrm{V}_{\mathrm{s}}=-3 \mathrm{~V} / 0 \mathrm{~V} /+3 \mathrm{~V} ; \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
LEAKAGE CURRENTS   Source Off Leakage, Is (Off)   Drain Off Leakage, $I_{D}$ (Off)   Channel On Leakage, ID, Is (On)	$\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.01 \\ & \pm 0.5 \\ & \pm 0.04 \\ & \pm 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 2.5 \\ & \pm 2.5 \\ & \pm 5 \\ & \hline \end{aligned}$	$\pm 5$   $\pm 5$ $\pm 5$		$\begin{aligned} & V_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \text {; See figure } \mathrm{x} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \text {; See figure } \mathrm{x} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V} \text {; See figure } \mathrm{x} \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current, $\mathrm{I}_{\mathrm{inL}}$ or $\mathrm{I}_{\mathrm{NH}}$   Digital Input Capacitance, $\mathrm{C}_{\mathrm{IN}}$	$\begin{aligned} & 0.001 \\ & 3 \\ & \hline \end{aligned}$		$\begin{aligned} & 2.0 \\ & 0.8 \\ & \pm 0.5 \end{aligned}$	$V$ min   V max   $\mu A$ typ   $\mu \mathrm{A}$ max   pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$   Transition Time, trrans   ton (EN)   toff (EN)   Break-Before-Make Time Delay, $t_{D}$   Charge Injection   Off Isolation   Channel-to-Channel Crosstalk   -3 dB Bandwidth   $\mathrm{C}_{\mathrm{s}}$ (Off)   $C_{D}$ (Off)   $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & 150 \\ & 190 \\ & 95 \\ & 120 \\ & 100 \\ & 125 \\ & 50 \\ & \\ & 50 \\ & 50 \\ & 60 \\ & 50 \\ & 35 \\ & 35 \\ & 150 \end{aligned}$		$\begin{aligned} & 265 \\ & 170 \\ & 170 \\ & 10 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ   MHz typ   pF typ pF max pF typ pF max pF typ pF max	
POWER REQUIREMENTS IDD $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$	0.001		$\begin{aligned} & 1 \\ & \pm 4.5 / \pm 16.5 \end{aligned}$	$\mu \mathrm{A}$ typ   $\mu \mathrm{A}$ max   V   $\min / \max$	$\begin{aligned} & \text { VDD }=5.5 \mathrm{~V}, \mathrm{~V} \mathrm{VS}=-5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V}, 5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { Gnd }=0 \mathrm{~V} \end{aligned}$

## ABSOLUTE MAXIMUM RATINGS

${ }^{1}$ Guaranteed by design, not subject to production test.
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 4.

Parameter	Rating
$\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{\text {SS }}$	35 V
$V_{\text {DD }}$ to GND	-0.3 V to +25 V
Vss to GND	+0.3 V to -25 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Inputs	GND -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D	300 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle max)
Continuous Current, S or D	200 mA
Operating Temperature Range Automotive (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
16-Lead TSSOP, $\theta_{\mathrm{JA}}$ Thermal Impedance	$150.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP, $\theta_{\mathrm{JA}}$ Thermal Impedance	$72.7^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb free	$260^{\circ} \mathrm{C}$

${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

## ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.


## PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS



Figure 2. TSSOP Pin Configuration


EXPOSED PAD TIED TO SUBSTRATE, Vss NC = NO CONNECT

Figure 3. LFCSP Pin Configuration

Table 5. Pin Function Descriptions

Pin No.			
TSSOP	LFCSP	Mnemonic	Description
1	15	AO	Logic Control Input.   Active High Digital Input. When low, the device is disabled and all switches are off.   When high, Ax logic inputs determine on switches.
3	16	EN	
3	1	VSS	Most Negative Power Supply Potential.
4	3	S1	Source Terminal. Can be an input or an output.
5	4	S2	Source Terminal. Can be an input or an output.
6	6	D	Drain Terminal. Can be an input or an output.
7 to 9	$2,5,7,8$,	NC	No Connection.
10	13		
11	10	S4	Source Terminal. Can be an input or an output.
12	11	S3	Source Terminal. Can be an input or an output.
13	12	GND	Most Positive Power Supply Potential.
14	14	A1	Ground (0 V) Reference.

## TRUTH TABLE

Table 6.

EN	A1	A0	S1	S2	S3	S4
0	X	X	0	Off	Off	Off
1	0	1	On	Off	Off	Off
1	1	0	Off	Off		
1	1	1	Off	Off	On	Off
1	0	Off	Off	On		

## Preliminary Technical Data

## TERMINOLOGY

## $I_{\text {DD }}$

The positive supply current.
Iss
The negative supply current.
$\mathbf{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
The analog voltage on Terminals D and S.

## Ron

The ohmic resistance between D and S.

## $\mathrm{R}_{\text {flat(on) }}$

Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.

## $I_{s}$ (Off)

The source leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}$ (Off)
The drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
The channel leakage current with the switch on.
$V_{\text {INL }}$
The maximum input voltage for Logic 0 .
$V_{\text {INH }}$
The minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$
The input current of the digital input.
$\mathrm{C}_{s}$ (Off)
The off switch source capacitance, which is measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}$ (Off)
The off switch drain capacitance, which is measured with reference to ground.

## $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)

The on switch capacitance, which is measured with reference to ground.

Cin
The digital input capacitance.
$t_{\text {ON }}$ (EN)
The delay between applying the digital control input and the output switching on. See Figure 24, Test Circuit 4.
toff (EN)
The delay between applying the digital control input and the output switching off.

## Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

## Off Isolation

A measure of unwanted signal coupling through an off switch.

## Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

## Bandwidth

The frequency at which the output is attenuated by 3 dB .

## On Response

The frequency response of the on switch.

## Insertion Loss

The loss due to the on resistance of the switch.

## THD + N

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.
$t_{\text {trans }}$
The delay time between the $50 \%$ and $90 \%$ points of the digital input and switch on condition when switching from one address state to another.

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply


Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply


Figure 6. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply


Figure 7. On Resistance as a Function of $V_{D}\left(V_{s}\right)$ for Different Temperatures, Single Supply


Figure 8. Leakage Currents as a Function of Temperature for Dual Supply


Figure 9. Leakage Currents as a Function of Temperature for Single Supply

## Preliminary Technical Data



Figure 10. Logic Threshold Voltage vs Supply Voltage


Figure 12. Charge Injection vs. Source Voltage


Figure 13. Transition Times vs. Temperature


Figure 14. Off Isolation vs. Frequency


Figure 15. Crosstalk vs. Frequency


Figure 16. On Response vs. Frequency


Figure 17. $T H D+N$ vs. Frequency


Figure 18. Off Capacitance vs. Source Voltage


Figure 19. On Capacitance vs. Source Voltage


Figure 20. Capacitance vs. Source Voltage for Single Supply

## TEST CIRCUITS



Figure 21. Test Circuit 1—On Resistance


Figure 22. Test Circuit 2—Off Leakage


Figure 23. Test Circuit 3—On Leakage


Figure 24. Test Circuit 4—Address to Output Switching Times


Figure 25. Test Circuit 5—Break-Before-Make Time


Figure 26. Test Circuit 6—Enable-to-Output Switching Delay


Figure 27. Test Circuit 7—Charge Injection


CHANNEL-TO-CHANNEL CROSSTALK $=20$ LOG $\frac{v_{\text {OUT }}}{v_{S}}$
Figure 28. Test Circuit 8—Off Isolation
Figure 30. Test Circuit 10—Channel-to-Channel Crosstalk


Figure 29. Test Circuit 9—Bandwidth


Figure 31. Test Circuit 11-THD + Noise

## OUTLINE DIMENSIONS



Figure 32. 14-Lead Thin Shrink Small Outline Package [TSSOP]
( $R U-14$ )
Dimension shown in millimeters


ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG1404YRUZ			
ADG1404YRUZ-REEL 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-14
ADG1404YRUZ-REEL7 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)
ADG1404YCPZ-500RL7 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-14
ADG1404YCPZ-REEL7 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Lead Frame Chip Scale Package (VQ_LFCSP)	RU-14

[^2]NOTES

NOTES


[^0]:    ${ }^{1}$ Guaranteed by design, not subject to production test.

[^1]:    ${ }^{1}$ Guaranteed by design, not subject to production test.

[^2]:    $\mathrm{Z}=\mathrm{Pb}$-free part.

