FEATURES

5Ω Max On Resistance
0.5Ω Max On Resistance Flatness
33 V Supply Maximum Ratings
Fully specified at $\pm 15 \mathrm{~V} / 12 \mathrm{~V} / \pm 5 \mathrm{~V}$
3V Logic Compatible Inputs
Rail-to-Rail Operation
Break-Before-Make Switching Action
16-Lead TSSOP Packages
Typical Power Consumption (< $0.03 \mu \mathrm{~W}$)

APPLICATIONS

Relay Replacement
Audio and Video Routing
Automatic Test Equipment
Data Acquisition Systems
Battery-Powered Systems
Sample-and-Hold Systems
Communication Systems

GENERAL DESCRIPTION

The ADG1408 and ADG1409 are monolithic CMOS analog multiplexers comprising eight single channels and four differential channels, respectively. The ADG1408 switches one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1, and A2. The ADG1409 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched OFF.

The ADG1408/ADG1409 are designed on an enhanced CMOS process that provides low power dissipation yet gives high switching speed and low on resistance. Each channel conducts equally well in both directions when ON and has an input signal range that extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. All channels exhibit break-before- make switching action, preventing momentary shorting when switching channels. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

RevPrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

1. 5Ω Max On Resistance
2. 0.5Ω Max On Resistance Flatness
3. 3V Logic Compatible Digital Input $\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$
4. 16 Lead TSSOP package

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

TABLE OF CONTENTS

ADG1408/ADG1409—Specifications ... 3	Terminology .. 9
Dual Supply .. 3	
Tingle Supply .. 4	
Typical Performance Characteristics .. 10	

Terminology ... 9
Typical Performance Characteristics .. 10
Test Circuits.. 12
Outline Dimensions ... 15
Ordering Guide... 16

Pin Configurations (TSSOP) ... 8

REVISION HISTORY

ADG1408/ADG1409—SPECIFICATIONS

DUAL SUPPLY ${ }^{1}$

Table 1. $\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=-15 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range Ron Ron Flatness Δ Ron	$\begin{aligned} & 3 \\ & 4 \\ & 0.5 \\ & 0.5 \end{aligned}$	5	$V_{S S} \text { to } V_{D D}$ 5	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{D}}=+10 \mathrm{~V},-10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=+10 \mathrm{~V},-10 \mathrm{~V} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage Is (OFF) Drain OFF Leakage Io (OFF) ADG1408 ADG1409 Channel ON Leakage I_{D} Is (ON) ADG1408 ADG1409	$\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 1 \\ & \pm 1 \\ & \\ & \pm 1 \\ & \pm 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 2.5 \\ & \\ & \pm 100 \\ & \pm 50 \\ & \\ & \pm 100 \\ & \pm 50 \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 100 \\ & \pm 50 \\ & \\ & \pm 100 \\ & \pm 50 \end{aligned}$	nA typ nA max nA max nA max nA max nA max	$V_{D}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-10 \mathrm{~V} ;$ Test Circuit 2 ± 0.5 $V_{D}= \pm 10 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V} ;$ Test Circuit 3 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V} ;$ Test Circuit 4
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VinL Input Current lind or linh Cin, Digital Input Capacitance	$\begin{aligned} & \pm 0.005 \\ & 5 \end{aligned}$	$\begin{gathered} 2.0 \\ 0.8 \\ \\ \pm 0.5 \end{gathered}$	2.0 0.8 ± 0.5	\vee min V max $\mu \mathrm{A}$ max $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$					
ttransition	80	120 250	120 250	ns typ ns max	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S} 1}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 8}= \pm 10 \mathrm{~V} ; \\ & \text { Test Circuit } 5 \end{aligned}$
$\mathrm{T}_{\text {Bвм }}$	10	10	$\begin{aligned} & 10 \\ & 1 \end{aligned}$	ns typ ns min	$\begin{aligned} & R_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=10 \mathrm{~V} \text {; Test Circuit } 6 \end{aligned}$
ton(EN)	$\begin{aligned} & 85 \\ & 150 \end{aligned}$	$\begin{aligned} & 125 \\ & 225 \end{aligned}$	$\begin{aligned} & 125 \\ & 225 \end{aligned}$	ns typ ns max	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega \mathrm{C}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} \text {; Test Circuit } 7 \end{aligned}$
toff(EN)	40	$\begin{aligned} & 65 \\ & 150 \end{aligned}$	$\begin{aligned} & 65 \\ & 150 \end{aligned}$	ns typ ns max	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V} ; \text { Test Circuit } 7 \end{aligned}$
Charge Injection	20		20	pC typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{nF}$; Test Circuit 8
OFF Isolation	75			dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{f}=100 \mathrm{kHz} ; \\ & \mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V} \text {; Test Circuit } 9 \end{aligned}$
Channel-to-Channel Crosstalk	85			dB typ	$\mathrm{RL}=1 \mathrm{k} \Omega, \mathrm{f}=100 \mathrm{kHz} ;$ Test Circuit 10
Total Harmonic Distortion, THD + N	0.002			\% typ	$\mathrm{R}_{\mathrm{L}}=600 \Omega, 5 \mathrm{Vrms} ; \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz
-3dB Bandwidth	50			MHz typ	$R_{L}=300 \Omega, C_{L}=5 \mathrm{pF}$; Test Circuit 10 Test Circuit 10
$\begin{aligned} & C_{S} \text { (OFF) } \\ & C_{D} \text { (OFF) } \end{aligned}$	15			pF typ	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$

${ }^{1}$ Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; TVersion: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

SINGLE SUPPLY ${ }^{1}$

Table 2. $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \mathrm{~V} \pm 10 \%$,, $\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}$, GND $=0 \mathrm{~V}$, unless otherwise noted.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
OFF Isolation	-75			dB typ	Test Circuit 8 $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \mathrm{f}=100 \mathrm{kHz}$; $\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$; Test Circuit 9
Channel-to-Channel Crosstalk	85			dB typ	$\mathrm{RL}=1 \mathrm{k} \Omega, \mathrm{f}=100 \mathrm{kHz} ;$ Test Circuit 10
Total Harmonic Distortion, THD + N	0.002			\% typ	$\mathrm{R}_{\mathrm{L}}=600 \Omega, 5 \mathrm{Vrms} ; ~ f=20 \mathrm{~Hz}$ to 20 kHz
-3dB Bandwidth	50			MHz typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; Test Circuit 10
$\mathrm{C}_{\text {s }}$ (OFF)	15			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
C_{D} (OFF)					$\mathrm{f}=1 \mathrm{MHz}$
ADG1408	100			pF typ	
ADG1409	50			pF typ	
$\mathrm{C}_{\mathrm{d}, \mathrm{Cs}}(\mathrm{ON})$					$\mathrm{f}=1 \mathrm{MHz}$
ADG1408	150			pF typ	
ADG1409	75			pF typ	
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$
ldo		1	1	$\mu \mathrm{A}$ typ	Digital Inputs $=0 \mathrm{~V}$ or V_{DD}
		5	5	$\mu \mathrm{A}$ max	
IDD	150			$\mu \mathrm{A}$ typ	Digital Inputs $=5$
			300	$\mu \mathrm{A}$ max	

${ }^{1}$ Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ}$; TVersion: $-55^{\circ} \mathrm{C}$ to $+125^{\circ}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

DUAL SUPPLY ${ }^{1}$

Table 3. $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=-5 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range Ron Δ Ron	$\begin{aligned} & 6 \\ & 7 \\ & 0.5 \end{aligned}$	8	V_{SS} to V_{DD} 10	V Ω typ Ω max Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}= \pm 3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{D}}=+3.3 \mathrm{~V},-3.3 \mathrm{~V} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage Is (OFF) Drain OFF Leakage lo (OFF) ADG1408 ADG1409 Channel ON Leakage I_{D} Is (ON) ADG1408 ADG1409	$\begin{aligned} & \pm 0.01 \\ & \pm 0.5 \\ & \pm 1 \\ & \pm 1 \\ & \\ & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 2.5 \\ & \pm 100 \\ & \pm 50 \\ & \\ & \pm 100 \\ & \pm 50 \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 100 \\ & \pm 50 \\ & \\ & \pm 100 \\ & \pm 50 \end{aligned}$	nA typ nA max nA max nA max nA max nA max	$\mathrm{V}_{\mathrm{D}}= \pm 3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=-3.3 \mathrm{~V} ;$ Test Circuit 2 $\mathrm{V}_{\mathrm{D}}= \pm 3.3 . \mathrm{V} ; \mathrm{V}_{\mathrm{S}}= \pm 3.3 \mathrm{~V} ;$ Test Circuit 3 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 3.3 \mathrm{~V} ;$ Test Circuit 4
DIGITAL INPUTS Input High Voltage, Vinh Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current linl or linh $\mathrm{C}_{\text {IN }}$, Digital Input Capacitance	± 0.005	$\begin{aligned} & 2.0 \\ & 0.8 \\ & \\ & \pm 0.5 \end{aligned}$	$\begin{gathered} 2.0 \\ 0.8 \\ \\ \pm 0.5 \end{gathered}$	V min V max $\mu \mathrm{A}$ max $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS² $\mathrm{t}_{\text {transition }}$		120	120	ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ;$

ADG1408/ADG1409

${ }^{1}$ Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; Y Version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS¹

Table 4. Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	Rating
$V_{\text {DD }}$ to V $\mathrm{V}_{\text {S }}$	36 V
$V_{\text {DD }}$ to GND	-0.3 V to +25 V
$V_{\text {ss }}$ to GND	+0.3 V to -25 V
Analog, Digital Inputs ${ }^{2}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 20 mA , Whichever Occurs First
Continuous Current, S or D	30 mA
Peak Current, S or D (Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle max)	100 mA
Operating Temperature Range	
Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Automotive (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$

Parameter	Rating
TSSOP Package, Power Dissipation	450 mW
θ_{JA}, Thermal Impedance	$1504^{\circ} \mathrm{C} / \mathrm{W}$
θ_{Jc}, Thermal Impedance	$50^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Vapor Phase $(60 \mathrm{sec})$	$215^{\circ} \mathrm{C}$
Infrared $(15 \mathrm{sec})$	$220^{\circ} \mathrm{C}$

${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
${ }^{2}$ Overvoltages at A, EN, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Figure 1. Pin Configurations - TSSOP

Table 5. ADG408 Truth Table

A2	A1	A0	EN	ON SWITCH
X	X	X	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

Table 6. ADG409 Truth Table

			ON SWITCH
Al	A0	EN	PAIR
X	X	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

TERMINOLOGY

$V_{\text {DD }}$	Most positive power supply potential.
$V_{\text {ss }}$	Most negative power supply potential in dual supplies. In single supply applications, it may be connected to ground.
GND	Ground (0 V) reference.
Ron	Ohmic resistance between D and S.
\triangle Ron	Difference between the Ron of any two channels.
Is (OFF)	Source leakage current when the switch is off.
l (OFF)	Drain leakage current when the switch is off.
$\mathrm{Id}_{\mathrm{L}} \mathrm{IS}^{\text {(}} \mathrm{ON}$)	Channel leakage current when the switch is on.
V_{D} (vs)	Analog voltage on terminals D, S.
Cs_{5} (OFF)	Channel input capacitance for OFF condition.
C_{D} (OFF)	Channel output capacitance for OFF condition.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	ON switch capacitance.
Cl_{N}	Digital input capacitance.
ton (EN)	Delay time between the 50% and 90% points of the digital input and switch ON condition.
toff (EN)	Delay time between the 50\% and 90\% points of the digital input and switch OFF condition.
ttransition	Delay time between the 50% and 90% points of the digital inputs and the switch ON condition when switching from one address state to another.
topen	OFF time measured between the 80% point of both switches when switching from one address state to another.
$\mathrm{V}_{\text {INL }}$	Maximum input voltage for Logic 0 .
VINH	Minimum input voltage for Logic 1.
$\mathrm{IINL}_{\text {(}}^{\text {(}}$ NH)	Input current of the digital input.
IDD	Positive supply current.
Iss	Negative supply current.
Off Isolation	A measure of unwanted signal coupling through an OFF channel.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Bandwidth	The frequency at which the output is attenuated by 3 dBs .
On Response	The Frequency response of the "ON" switch.
THD + N	The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

TYPICAL PERFORMANCE CHARACTERISTICS

TBD

TPC 1. On Resistance as a Function of VD(VS) for for Single Supply

TPC 2. On Resistance as a Function of VD(VS) for Dual Supply

TPC 3. On Resistance as a Functionof VD(VS) for Different Temperatures, Single Supply

TPC 4. On Resistance as a Functionof VD(VS) for Different Temperatures, Single Supply

TPC 5. On Resistance as a Functionof VD(VS) for Different Temperatures,
Dual Supply

TPC 6. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

TPC 7. Leakage Currents as a function of Temperature

TPC 8 Supply Currents vs. Input Switching Frequency

TPC 9 . Charge Injection vs. Source Voltage

TPC 10. TON/TOFF Times vs. Temperature)

TPC 11 Off Isolation vs. Frequency

TPC 12 Crosstalk vs. Frequency

TPC 13. On Response vs. Frequency

TBD

TPC 14. THD $+N$ vs. Frequency

TEST CIRCUITS

Test Circuit 1. On Resistance
Figure 2. Test Circuit 1. On Resistance

Test Circuit 2. I_{S} (OFF)
Figure 3. Test Circuit 2. Is (OFF)

Test Circuit 3. I_{D} (OFF)
Figure 4. Test Circuit 3. ID (OFF)

Test Circuit 4. I_{D} (ON)
Figure 5. Test Circuit 4. ID (ON)

Test Circuit 5. Switching Time of Multiplexer, $t_{\text {transmion }}$
Figure 6. Test Circuit 5. Switching Time of Multiplexer, $t_{\text {TRANSITION }}$

Test Circuit 6. Break-Before-Make Delay, $t_{\text {OPEN }}$

Figure 7. Test Circuit 6. Break-Before-Make Delay, topen

Test Circuit 7. Enable Delay, $t_{\text {on }}(E N), t_{\text {off }}$ (EN)
Figure 8. Test Circuit 7. Enable Delay, ton (EN), toff (EN)

Test Circuit 8. Charge Injection
Figure 9. Test Circuit 8. Charge Injection

OFF ISOLATION - 20 LOG $V_{\text {OUT }} V_{\text {IN }}$
Test Circuit 9. OFF Isolation
Figure 10. Test Circuit 9. OFF Isolation

Test Circuit 10. Channel-to-Channel Crosstalk Figure 11. Test Circuit 10. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)
Dimensions shown in millimeters

Figure 12. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)

ORDERING GUIDE

Model	Temperature Range	Package Option ${ }^{1}$
ADG1408BRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	RU-16
ADG1409BRU	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	RU-16

${ }^{1} \mathrm{RU}=$ Thin Shrink Small Outline Package (TSSOP)

