3Ω, 4-/8-Channel Multiplexers in Chip Scale Package

ADG758/ADG759

FEATURES

1.8 V to 5.5 V Single Supply
$\pm 2.5 \mathrm{~V}$ Dual Supply
3Ω ON Resistance
0.75Ω ON Resistance Flatness
100 pA Leakage Currents
14 ns Switching Times
Single 8-to-1 Multiplexer ADG758
Differential 4-to-1 Multiplexer ADG759
20-Lead $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Chip Scale Package
Low Power Consumption
TTL-/CMOS-Compatible Inputs
For Functionally Equivalent Devices in 16-Lead TSSOP
Package, See ADG708/ADG709

APPLICATIONS

Data Acquisition Systems
Communication Systems
Relay Replacement
Audio and Video Switching
Battery-Powered Systems

GENERAL DESCRIPTION

The ADG758 and ADG759 are low voltage, CMOS analog multiplexers comprising eight single channels and four differential channels, respectively. The ADG758 switches one of eight inputs (S1-S8) to a common output, D, as determined by the 3-bit binary address lines A0, A1, and A2. The ADG759 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched OFF.

Low power consumption and an operating supply range of 1.8 V to 5.5 V make the ADG758 and ADG759 ideal for battery-powered, portable instruments. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels.
These switches are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low ON resistance and leakage currents. ON resistance is in the region of a few ohms and is closely matched between switches and very flat over the full signal range. These parts can operate equally well as either multiplexers or demultiplexers and have an input signal range that extends to the supplies.
The ADG758 and ADG759 are available in 20-lead chip scale packages.

REV. A

[^0]FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

1. Small 20-Lead $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Chip Scale Packages (CSP).
2. Single/Dual Supply Operation. The ADG758 and ADG759 are fully specified and guaranteed with 3 V and 5 V singlesupply and $\pm 2.5 \mathrm{~V}$ dual-supply rails.
3. Low R_{ON} (3 Ω Typical).
4. Low Power Consumption ($<0.01 \mu \mathrm{~W}$).
5. Guaranteed Break-Before-Make Switching Action.

[^1]

[^2]DUAL SUPPLY ${ }_{\left(V_{D D}=+2.5\right.} \mathrm{V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-2.5 \mathrm{~V} \pm 10 \%$, $\mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted. $)$

NOTES

${ }^{1}$ Temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Chip Scale Package,	
$\theta_{\text {JA }}$ Thermal Impedance	$2^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
${ }^{2}$ Overvoltages at EN, A, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG758/ADG759 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Table I. ADG758 Truth Table

A2	A1	A0	EN	Switch Condition
X	X	X	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8
X Don't Care				

Table II. ADG759 Truth Table

A1	A0	EN	ON Switch Pair
X	X	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

X = Don't Care

PIN CONFIGURATIONS

NC = NO CONNECT
EXPOSED PAD TIED TO SUBSTRATE, $\mathrm{V}_{\text {SS }}$

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG758BCP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Chip Scale Package (CSP)	CP-20
ADG759BCP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Chip Scale Package (CSP)	CP-20

V_{DD}	Most Positive Power Supply Potential Most Negative Power Supply in a dual-supply application. In single-supply applications, this should be tied to ground at the device. Ground (0 V) Reference
V_{SS}	Source Terminal. May be an input or output. GND
S	

TPC 1. ON Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply

TPC 2. ON Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

TPC 3. ON Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

TPC 4. ON Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

TPC 5. ON Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply

TPC 6. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

TPC 7. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

TPC 8. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

TPC 9. Leakage Currents as a Function of Temperature

TPC 10. Leakage Currents as a Function of Temperature

TPC 11. Supply Current vs. Input Switching Frequency

TPC 12. OFF Isolation vs. Frequency

TPC 13. Crosstalk vs. Frequency

TPC 14. ON Response vs. Frequency

TPC 15. Charge Injection vs. Source Voltage

Test Circuits

Test Circuit 1. ON Resistance

Test Circuit 2. Is (OFF)

*SIIILAR CONNECTION FOR ADG759

Test Circuit 3. I_{D} (OFF)

NC = NO CONNECT ∇

Test Circuit 4. $I_{D}(O N)$

Test Circuit 5. Switching Time of Multiplexer, $t_{\text {TRANSITION }}$

*SIMILAR CONNECTION FOR ADG759
Test Circuit 6. Break-Before-Make Delay, topen

Test Circuit 7. Enable Delay, $t_{\text {ON }}(E N)$, $t_{\text {OFF }}$ (EN)

*SIMILAR CONNECTION FOR ADG759
Test Circuit 8. Charge Injection

Test Circuit 9. OFF Isolation

Test Circuit 11. Bandwidth

Power-Supply Sequencing

When using CMOS devices, care must be taken to ensure correct power-supply sequencing. Incorrect power-supply sequencing can result in the device being subjected to stresses beyond the maximum ratings listed in the data sheet. Digital and analog inputs should always be applied after power supplies and ground. For single-supply operation, $\mathrm{V}_{\text {SS }}$ should be tied to GND as close to the device as possible.

Test Circuit 10. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

20-Lead Chip Scale Package

(CP-20)

Revision History

LocationPageData Sheet changed from REV. 0 to REV. A.
Edits to General Description section 1
Update Outline Drawings 12

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]: NOTES
 ${ }^{1}$ Temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.
 Specifications subject to change without notice.

[^2]: NOTES
 ${ }^{1}$ Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.
 Specifications subject to change without notice.

