FEATURES

- 14-bit resolution
- 1 MHz sampling rate
- Functionally complete
- No missing codes
- Small 24-pin DDIP or SMT package
- Low power, 1.9 Watts maximum
- Operates from $\pm 15 \mathrm{~V}$ or $\pm 12 \mathrm{~V}$ supplies
- Bipolar $\pm 5 \mathrm{~V}$ input range

GENERAL DESCRIPTION

The ADS-927 is a high-performance, 14 -bit, 1 MHz sampling A/D converter. This device samples input signals up to Nyquist frequencies with no missing codes. The ADS-927 features outstanding dynamic performance including a THD of -80 dB .
Housed in a small 24-pin DDIP or SMT (gull-wing) package, the functionally complete ADS-927 contains a fast-settling sample-hold amplifier, a subranging (two-pass) A/D converter, a precise voltage reference, timing/control logic, and errorcorrection circuitry. Digital input and output levels are TTL.

Requiring $\pm 15 \mathrm{~V}$ (or $\pm 12 \mathrm{~V}$) and +5 V supplies, the ADS-927 dissipates only 1.95 W (1.65 W for $\pm 12 \mathrm{~V}$), maximum. The unit is offered with a bipolar input (-5 V to +5 V). Models are available for use in either commercial (0 to $+70^{\circ} \mathrm{C}$) or military (-55 to $+125^{\circ} \mathrm{C}$) operating temperature ranges. Applications include radar, sonar, spectrum analysis, and graphic/medical imaging.

INPUT/OUTPUT CONNECTIONS

PIN	FUNCTION	PIN	FUNCTION
1	BIT 14 (LSB)	24	-12V/-15V SUPPLY
2	BIT 13	23	ANALOG GROUND
3	BIT 12	22	+12V/+15V SUPPLY
4	BIT 11	21	+10V REFERENCE OUT
5	BIT 10	20	ANALOG INPUT
6	BIT 9	19	ANALOG GROUND
7	BIT 8	18	BIT 1 (MSB)
8	BIT 7	17	BIT 2
9	BIT 6	16	START CONVERT
10	BIT 5	15	EOC
11	BIT 4	14	DIGITAL GROUND
12	BIT 3	13	+5V SUPPLY

Figure 1. ADS-927 Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	LIMITS	UNITS
$+\mathbf{+ 1 2 V} /+15 V$ Supply (Pin 22)	0 to +16	Volts
-12V/-15V Supply (pin 24)	0 to -16	Volts
+5V Supply (Pin 13)	0 to +6	Volts
Digital Input (Pin 16)	-0.3 to + VDD +0.3	Volts
Analog Input (Pin 20)	± 15	Volts
Lead Temperature (10 seconds)	+300	${ }^{\circ} \mathrm{C}$

PHYSICAL/ENVIRONMENTAL

PARAMETERS	MIN.	TYP.	MAX.	UNITS
Operating Temp. Range, Case				
ADS-927MC, GC	0	-	+70	${ }^{\circ} \mathrm{C}$
ADS-927MM, GM, 883	-55	-	+125	${ }^{\circ} \mathrm{C}$
Thermal Impedance				
$\theta \mathrm{jc}$		6		${ }^{\circ} \mathrm{C} /$ Watt
$\theta c a$		24		${ }^{\circ} \mathrm{C} /$ Watt
Storage Temperature	-65	-	+150	${ }^{\circ} \mathrm{C}$
Package Type	24-pin, metal-sealed, ceramic DDIP or SMT 0.42 ounces (12 grams)			
Weight				

FUNCTIONAL SPECIFICATIONS

($\mathrm{TA}=+25^{\circ} \mathrm{C}, \pm \mathrm{VcC}= \pm 15 \mathrm{~V}$ (or $\pm 12 \mathrm{~V}$), $+\mathrm{VDD}=+5 \mathrm{~V}$, 1 MHz sampling rate, and a minimum 1 minute warmup (1) unless otherwise specified.)

ANALOG INPUT	$+25^{\circ} \mathrm{C}$			0 to $+70^{\circ} \mathrm{C}$			-55 to $+125^{\circ} \mathrm{C}$			UNITS
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input Voltage Range (2)	-	± 5	-	-	± 5	-	-	± 5	-	Volts
Input Resistance	-	1	-	-	1	-	-	1	-	$\mathrm{k} \Omega$
Input Capacitance	-	7	15	-	7	15	-	7	15	pF
DIGITAL INPUT										
Logic Levels										
Logic "1"	+2.0	-	-	+2.0	-	-	+2.0	-	-	Volts
Logic "0"	-	-	+0.8	-	-	+0.8	-	-	+0.8	Volts
Logic Loading "1"	-	-	+20	-	-	+20	-	-	+20	$\mu \mathrm{A}$
Logic Loading "0"	-	-	-20	-	-	-20	$\bar{\square}$	-	-20	$\mu \mathrm{A}$
Start Convert Positive Pulse Width ${ }^{3}$	175	200	225	175	200	225	175	200	225	ns
STATIC PERFORMANCE										
Resolution	-	14	-	-	14	-	-	14	-	Bits
Integral Nonlinearity (fin $=10 \mathrm{kHz}$)	-	± 0.5	-	-	± 0.75	-	-	± 1.5	-	LSB
Differential Nonlinearity (fin $=10 \mathrm{kHz}$)	-	± 0.5	± 0.95	-	± 0.5	± 0.95	-	± 0.75	± 0.99	LSB
Full Scale Absolute Accuracy	-	± 0.08	± 0.15	-	± 0.15	± 0.25	-	± 0.3	± 0.5	\%FSR
Bipolar Zero Error (Tech Note 2)	-	± 0.05	± 0.1	-	± 0.1	± 0.25	-	± 0.15	± 0.3	\%FSR
Bipolar Offset Error (Tech Note 2)	-	± 0.05	± 0.1	-	± 0.1	± 0.25	-	± 0.25	± 0.4	\%FSR
Gain Error (Tech Note 2)	-	± 0.1	± 0.15	-	± 0.15	± 0.25	-	± 0.25	± 0.4	\%
No Missing Codes (fin $=10 \mathrm{kHz}$)	14	-	-	14	-	-	14	-	-	Bits
DYNAMIC PERFORMANCE										
```Peak Harmonics \((-0.5 \mathrm{~dB})\) dc to 100 kHz 100 kHz to 500 kHz Total Harmonic Distortion (-0.5dB) dc to 100 kHz 100 kHz to 500 kHz Signal-to-Noise Ratio (w/o distortion, -0.5 dB ) dc to 100 kHz 100 kHz to 500 kHz```										
	-	-91	-83	-	-90	-	-	-88	-	dB
	-	-82	-78	-	-82	-78	-	-80	-77	dB
	-	-90	-81	-	-89	-	-	-87	-	dB
	-	-80	-76	-	-80	-76	-	-79	-74	dB
	77	79	-	74	78	-	73	77	-	dB
	75	78	-	74	78	-	73	76	-	dB
Signal-to-Noise Ratio   (\& distortion, -0.5 dB )										
dc to 100 kHz	76	78	-	73	77	-	71	76	-	dB
100 kHz to 500 kHz	73	76	-	73	76	-	71	75	-	dB
Two-Tone Intermodulation										
240 kHz , $\mathrm{f}_{\mathrm{s}}=1 \mathrm{MHz},-0.5 \mathrm{~dB}$ )	-	-87	-	-	-86	-	-	-85	-	dB
Noise	-	350	-	-	350	-	-	350	-	$\mu \mathrm{Vrms}$
Input Bandwidth (-3dB)										
Small Signal (-20dB input)	-	7	-	-	7	-	-	7	-	MHz
Large Signal ( -0.5 dB input)	-	5	-	-	5	-	-	5	-	MHz
Feedthrough Rejection (fin $=500 \mathrm{kHz}$ )	-	84	-	-	84	-	-	84	-	dB
Slew Rate	-	$\pm 60$	-	-	$\pm 60$	-	-	$\pm 60$	-	V/ $\mu \mathrm{s}$
Aperture Delay Time	-	$\pm 20$	-	-	$\pm 20$	-	-	$\pm 20$	-	ns
Aperture Uncertainty	-	5	-	-	5	-	-	5	-	ps rms
S/H Acquisition Time										
Overvoltage Recovery Time (5)	1	400	1000	-	400	1000	-	400	1000	ns
A/D Conversion Rate	1	-	-	1	-	-	1	-	-	MHz



## Footnotes:

(1) All power supplies must be on before applying a start convert pulse. All supplies and the clock (START CONVERT) must be present during warmup periods. The device must be continuously converting during this time. There is a slight degradation in performance when using $\pm 12 \mathrm{~V}$ supplies.
(2) See Ordering Information for 0 to +10 V input range. Contact DATEL for availability of other input voltage ranges.
(3) A 1 MHz clock with a 200 ns wide start convert pulse is used for all production testing. For applications requiring less than a 1 MHz sampling rate, wider start convert pulses can be used. See Timing Diagram for more details.
(4) Effective bits is equal to:

$$
\frac{\text { is equal to: }}{(\mathrm{SNR}+\text { Distortion })-1.76+\left[20 \log \frac{\text { Full Scale Amplitude }}{\text { Actual Input Amplitude }}\right]}
$$

(5) This is the time required before the $A / D$ output data is valid after the analog input is back within the specified range.

## TECHNICAL NOTES

1. Obtaining fully specified performance from the ADS-927 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are connected to each other internally. For optimal performance, tie all ground pins (14, 19 and 23) directly to a large analog ground plane below the package.

Bypass all power supplies and the REFERENCE OUTPUT (pin 21) to ground with $4.7 \mu \mathrm{~F}$ tantalum capacitors in parallel with $0.1 \mu \mathrm{~F}$ ceramic capacitors. Locate the bypass capacitors as close to the unit as possible. If the user-installed offset and gain adjusting circuit in Figure 2 is used, also locate it as close to the ADS-927 as possible.
2. The ADS-927 achieves its specified accuracies without the
need for external calibration. If required, the device's small initial offset and gain errors can be reduced to zero using the input circuit of Figure 2. When using this circuit, or any similar offset and gain-calibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain.
3. When operating the ADS-927 from $\pm 12 \mathrm{~V}$ supplies, do not drive external circuitry with the REFERENCE OUTPUT. The reference's accuracy and drift specifications may not be met, and loading the circuit may cause accuracy errors within the converter.
4. Applying a start convert pulse while a conversion is in progress ( $\overline{\mathrm{EOC}}=$ logic "1") initiates a new and inaccurate conversion cycle. Data for the interrupted and subsequent conversions will be invalid.

## CALIBRATION PROCEDURE

(Refer to Figures 2 and 3)
Any offset and/or gain calibration procedures should not be implemented until devices are fully warmed up. To avoid interaction, offset must be adjusted before gain. The ranges of adjustment for the circuit of Figure 2 are guaranteed to compensate for the ADS-927's initial accuracy errors and may not be able to compensate for additional system errors.

All fixed resistors in Figure 2 should be metal-film types, and multiturn potentiometers should have TCR's of $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or less to minimize drift with temperature.
A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This can be accomplished by connecting LED's to the digital outputs and adjusting until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.
For the ADS-927, offset adjusting is normally accomplished at the point where the MSB is a 1 and all other output bits are 0's and the LSB just changes from a 0 to a 1 . This digital output transition ideally occurs when the applied analog input is $+1 / 2$ LSB $(+305 \mu \mathrm{~V})$.
Gain adjusting is accomplished when all bits are 1 's and the LSB just changes from a 1 to a 0 . This transition ideally occurs when the analog input is at +full scale minus $11 / 2$ LSB's $(+4.999085 \mathrm{~V})$.


## Zero/Offset Adjust Procedure

1. Apply a train of pulses to the START CONVERT input (pin 16) so the converter is continuously converting. If using LED's on the outputs, a 200 kHz conversion rate will reduce flicker.
2. Apply $+305 \mu \mathrm{~V}$ to the ANALOG INPUT (pin 20).
3. Adjust the offset potentiometer until the output bits are a 1 and all 0's and the LSB flickers between 0 and 1.

## Gain Adjust Procedure

1. Apply +4.999085 V to the ANALOG INPUT (pin 20).
2. Adjust the gain potentiometer until the output bits are all 1 's and the LSB flickers between 1 and 0.

Table 1. Zero and Gain Adjust

INPUT VOLTAGE   RANGE	ZERO ADJUST   $+1 / 2$ LSB	GAIN ADJUST   $\mathbf{+ F S}-11 / 2$ LSB
$\pm 5 \mathrm{~V}$	$+305 \mu \mathrm{~V}$	+4.999085 V

Table 2. Output Coding

OUTPUT CODING MSB   LSB	INPUT RANGE $\pm 5 \mathrm{~V}$	BIPOLAR SCALE
11111111111111	+4.99939	+FS -1 LSB
11100000000000	+3.75000	+3/4 FS
11000000000000	+2.50000	+1/2FS
10000000000000	0.00000	0
01000000000000	-2.50000	-1/2FS
00100000000000	-3.75000	-3/4FS
00000000000001	-4.99939	-FS +1 LSB
00000000000000	-5.00000	-FS

Coding is offset binary; $1 \mathrm{LSB}=610 \mu \mathrm{~V}$.

Figure 2. ADS-927 Calibration Circuit


Figure 3. Typical ADS-927 Connection Diagram

## THERMAL REQUIREMENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to $+70^{\circ} \mathrm{C}$ and -55 to $+125^{\circ} \mathrm{C}$. All room-temperature ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ ) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package.

Electrically-insulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed", and of course, minimal air flow over the surface can greatly help reduce the package temperature.

In more severe ambient conditions, the package/junction temperature of a given device can be reduced dramatically (typically $35 \%$ ) by using one of DATEL's HS Series heat sinks. See Ordering Information for the assigned part number. See page 1-183 of the DATEL Data Acquisition Components Catalog for more information on the HS Series. Request DATEL Application Note AN-8, "Heat Sinks for DIP Data Converters", or contact DATEL directly, for additional information.


Notes: 1. fs $=1 \mathrm{MHz}$.
2. The ADS-927 is a pulse-triggered device. Its internal operations are triggered by both the rising and falling edges of the start convert pulse. When sampling at 1 MHz , the start pulse must be between 175 and 225 nsec wide. For lower sampling rates, wider start pulses may be used, however, a minimum pulse width low of 50 nsec must be maintained.

Figure 4. ADS-927 Timing Diagram

Figure 5. ADS-927 Evaluation Board Schematic

(fs $=1 \mathrm{MHz}$, fin $=480 \mathrm{kHz}, \mathrm{Vin}=-0.5 \mathrm{~dB}, 16,384$-point FFT)

Figure 6. ADS-927 FFT Analysis


Figure 7. ADS-927 Histogram and Differential Nonlinearity

MECHANICAL DIMENSIONS INCHES (mm)


## ORDERING INFORMATION

MODEL	OPERATING	ANALOG		
NUMBER	TEMP. RANGE	INPUT	ACCESSORIES	
ADS-927MC	0 to $+70^{\circ} \mathrm{C}$	Bipolar ( $\pm 5 \mathrm{~V})$	ADS-B926/927	Evaluation Board (without ADS-927)
ADS-927MM	-55 to $+125^{\circ} \mathrm{C}$	Bipolar $( \pm 5 \mathrm{~V})$	HS-24	Heat Sinks for all ADS-917/927 DDIP models
ADS-927/883	-55 to $+125^{\circ} \mathrm{C}$	Bipolar $( \pm 5 \mathrm{~V})$	Receptacles for PC board mounting can be ordered through	
ADS-927GC	0 to $+70^{\circ} \mathrm{C}$	Bipolar $( \pm 5 \mathrm{~V})$	AMP Inc. Part \#3-331272-8 (Component Lead Socket), 24 required.	
ADS-927GM	-55 to $+125^{\circ} \mathrm{C}$	Bipolar $( \pm 5 \mathrm{~V})$	For MIL-STD-883 product specifications, contact DATEL.	
ADS-917MC	0 to $+70^{\circ} \mathrm{C}$	Unipolar $(0 \text { to }+10 \mathrm{~V})^{*}$	*	
ADS-917MM	-55 to $+125^{\circ} \mathrm{C}$	Unipolar $(0 \text { to }+10 \mathrm{~V})^{*}$	* For information, see ADS-917 data sheet.	
ADS-917GC	0 to $+70^{\circ} \mathrm{C}$	Unipolar $(0 \text { to }+10 \mathrm{~V})^{*}$		
ADS-917GM	-55 to $+125^{\circ} \mathrm{C}$	Unipolar $(0 \text { to }+10 \mathrm{~V})^{*}$		

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1151 Tel: (508) 339-3000 (800) 233-2765 Fax: (508) 339-6356 Internet:www.datel.com E-mail:sales@datel.com Data Sheet Fax Back: (508) 261-2857

DATEL (UK) LTD. Tadley, England Tel: (01256)-880444
DATEL S.A.R.L. Montigny Le Bretonneux, France Tel: 1-34-60-01-01 DATEL GmbH München, Germany Tel: 89-544334-0
DATEL KK Tokyo, Japan Tel: 3-3779-1031, Osaka Tel: 6-354-2025

